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BuzzFeed
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Our headlines and thumbnail images span a wide range of post types



The Optimizer

FlexPro: a BuzzFeed service that 
writers use to choose the best 
headline and thumbnail combination 
for an article post

Top 3 winning variants for a test
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The Optimizer
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● Tests all the submitted headline x 
thumbnail combinations (variants) 
live on buzzfeed.com

● Measures clicks and impressions on 
every variant

● Selects the winning combination, 
which becomes the default headline 
and thumbnail for the article

During test, each variant of 
the post is simultaneously 
shown to a distinct subset 
of users on the site



“BuzzFeed also has tools like a headline 
optimizer. It can take a few different headline 
and thumbnail image configurations and test 
them in real time as a story goes live, then spit 
back the one that is most effective.”

Inside the Buzz-Fueled Media 
Startups Battling for Your Attention, WIRED, 2014

some press 
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The OG FlexPro
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● Version 1 tests the variants live on the site using 
Multi-Armed Bandits

● Variants with higher CTR get increased exposure on 
the site in a greedy fashion

● Eventually, a winning variant is selected, when its CTR 
is deemed highest by a statistically significant margin



The Problem
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Need for Speed
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Social platform performance had become a product priority
The fastest winner selection algorithm allows us to distribute the optimized 
version of the article on social platforms. If too slow, we publish the 
non-optimized version.

test variants select winner disseminate winner



Out with the Old

A new FlexPro algorithm was needed to select 
experiment winners with statistical rigor and speed

● Experiments taking too long to complete with the legacy algorithm (>12 
hours)

● Promptly publishing the article on social platforms (Facebook) requires 
optimal headline and thumbnail output ASAP

● Had critical dependencies on other services that were getting 
decommissioned
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The Algorithm
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Methodology
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Old algorithm:
Multi-Armed Bandit 

New algorithm: 
Bayesian A/B Testing

➢ Ensures that higher performing 
variants get increased exposure on 
site

➢ Significance will take longer to get 
established

➢ Maximizes the clicks received on the 
site 

➢ Gives max impressions to every 
variant, including worse-performing 
variants

➢ Minimizes the duration of each test

➢ Gives intuitive results e.g. probability 
that A is the best variant, and 
expected CTR loss

Given the new prioritization on speed of variant testing:
Try a new algorithm to get faster results



Bayesian A/B Test Approach
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1. Fit the posterior probability density distributions of each variant’s CTR 
using a beta distribution:

P(CTR | clicks, impressions) ~ B(  = clicks, β = impressions - clicks)

2. Calculate the probability that variant A is better than B (and C, D, …) 
based on these pdfs

3. Use these probabilities to calculate expected loss for each variant (e.g. 
how many clicks can I possibly lose if I choose this variant as winner?) 
All choices come with a potential risk.

4. Don’t decide on a winner until you can guarantee its expected loss falls 
below a “threshold of caring” defined in advance



Bayesian A/B Test Approach
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trials x 10

● Winner was already obvious with less trials(left)
● Even though more trials helps (right)
● Can resolve ASAP with less trials (left)



Aside:
Closed Form Probability Formulas…. FML
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Must calculate P(variant A > variant B)
… but deriving a closed form solution for this AND translating it to 
code is painful
.... even trickier when number of variants > 2

wtf



Using Monte Carlo Instead
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Simple Idea: P(variant A > variant B) can be approximated by the 
number of times a random draw from A’s CTR distribution is > a 
random draw from B’s CTR distribution

Repeat this 1000x (or more for better precision)



Simulating the Expected Losses
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Every choice comes with a risk.
Calculate the expected loss of choosing variant A as the winner: 

1. Randomly draw from every variant’s CTR distribution. 

2. If variant A’s CTR is the highest:
expected loss  = 0

3. If a different variant’s CTR is highest: 
expected loss = max variant CTR - variant A CTR.

4. Repeat for 1000 random draws. 

5. Average the losses across the 1000 draws. 

The output is the loss in CTR you can expect from choosing variant A 
over all other variants.



How Much Loss Is Acceptable?
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● Only choose a variant as winner when its expected 
CTR loss falls below a pre-defined threshold of 
caring: the potential loss in CTR that you are willing 
to risk

● Example values for : 0.01%, 0.005%, 0.00001%. Real 
intuitive!

● If it does not fall below this threshold, keep testing.



Resolving Inconclusive Tests
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● Major motivation for version 2 is to keep experiments 
fast!

● We impose a hard, self-defined limit on the number of 
impressions a variant can receive: the impression_limit

● If no winner is statistically significant by the time the 
impression_limit is reached: default to writer’s discretion.

● But wait…



What about Ties?
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● The method I started out with will only identify if there is a clear winner
A    B      C
5%     2%     1%

● What if there is only a clear loser?!
A    B      C
5%     5%     1%

● Idea: Choose either A or B randomly so long as the choice outperforms 
the worst variant ( C ) by a certain ratio. That way, the clear losers are at 
least thrown out.



Final Product
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Resolve time: 1 day -> 1.5 hours!



Measuring Impact
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Evaluation Goal
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We needed to quantify FlexPro version 2’s impact on post views

1. Relative to not using an optimizer at all, AND

2. Relative to version 1’s impact

Hypothesis

1. Version 2 (Bayesian A/B Testing) will perform best in social platform 
views

2. Version 1 (Multi Armed Bandit) will perform best in onsite views



Can’t A/B Test ¯\_(ツ)_/¯
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A proper A/B test was out of the question.

1. A post can only stick with one headline and thumbnail when shared 
on social platforms. Therefore we cannot compare the outputs of 
two algorithms in a controlled setting

2. Version 1 had to be deprecated for other reasons; could not 
resurrect



Naive Approach
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All posts with FlexPro on are in the test group. 

All posts with FlexPro off are in the control group.

Result:

● FlexPro off posts: average of 56K views 
● FlexPro on posts: average of 231K views



Naive Approach
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Communication from 2015 
about v1

FlexPro increases avg page 

views by 5x!



A Causal Approach

28

Problem: FlexPro usage may correlate with other factors e.g. the 
post’s author, vertical, etc. 

Data: Each data point is a post with features: 

flexpro_on:  Was FlexPro used? 
vertical:  The post’s category e.g. News, Quiz, etc.
author:  The post’s author 

Idea: Use propensity matching to group these posts into pseudo 
treatment and control groups, where FlexPro on is a treatment. 
Treatment group members should behave similarly to their control 
group counterparts. 

Measurement: What is the avg # views for treatment group vs control 
group?



Propensity Matching
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● To measure the efficacy of a drug, you want to ensure that your treatment 
subjects and your control subjects have equal likelihood of going after the drug.

● Posts have different propensities for using FlexPro, and that can be based on the 
author, vertical, etc. of the post.

● Fit logistic regression Model:

flexpro_on ~ author + vertical 

● Propensity scores = model’s class probabilities

P(flexpro_on = 1 | author=’Matt Perpetua’, vertical=’Quiz’)

● For every member of treatment group (flexpro on), add a member to control 
group (flexpro off) with nearest propensity



Estimating Treatment Effect
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● Fit a linear regression model on the new dataset to get fitted  values

#views = 1flexpro_on + 2author + 3vertical

1 = the average treatment effect (ATE) of flexpro

● Repeated this whole process on n bootstrapped samples to generate 
confidence intervals for average treatment effect of flexpro



Conclusion
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LARGE error bars

Effect on views is 
positive for both v1 and 
v2.



Conclusion
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As hypothesized,

● Bayesian A/B Testing better 
for speed and Social platform 
views

● Multi Armed Bandit better for 
Site views

No 5x improvement, but 
will accept 1.35x



Thank you!

Psst -- we’re hiring! 
lucy.wang@buzzfeed.com
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