
Leveraging Redshift Spectrum

for Fun and Profit

About This Talk

As a software engineer at a startup, I wear many hats.

This talk is the story of:

- Big Data at a startup (or, how to spend all your cash on Redshift)

- How we took control of our redshift costs

- How you can do the same (with less pain)

Big Data at a Startup

1. Funny Joke!

2. Until it’s not…

1. Then it’s expensive

Total Rows in Redshift by Date

1

2

3

[1] https://blog.atomdata.io/the-hitchhikers-guide-to-redshift-part-1-with-great-power-comes-performance-issues-748d293e0b18

[1]

Redshift: Managing Data Volume

Easy Stuff Already Done:

● Added nodes (a lot)
● Encoded all columns
● Vacuumed nightly
● Eliminated experiments/old tables

Next up: Data Lifecycle Management 💀, classically means:

● New Systems
● More Complexity
● Fragmented Data

But does it have to be painful in 2017?

[1] https://blog.atomdata.io/the-hitchhikers-guide-to-aws-redshift-part-2-let-s-cut-costs-cfdf2d67293b

Querying Cold Data

Solution Pay-per-query Quick Setup SQL Join to Redshift

Non-hosted Solutions No No Maybe No

Amazon EMR No Yes Maybe No

2nd Redshift Cluster No Yes Yes Not really

Google BigQuery Yes Yes Yes No

Amazon Athena Yes Yes Yes No

Redshift Spectrum Yes Yes Yes Yes

Spectrum allows us to use our current BI/reporting queries with almost no changes

How We Took Control of Costs

What is Spectrum?

[1] https://aws.amazon.com/redshift/spectrum/

Spectrum: CSV vs Parquet

https://dzone.com/articles/how-to-be-a-hero-with-powerful-parquet-google-and

If you are running this query once a day for a year, using uncompressed CSV
files will cost $7,300. Even compressed CSV queries will cost over $1,800.

However, using the Apache Parquet file format, it will cost about $460.”

A columnar storage format is imperative for optimized performance and cost

Previous Architecture

Queue S3 (CSV) Redshift

Queue

Queue

Webapp

Webapp

Webapp

Webapp

Current Architecture

S3 (CSV) Redshift

app1

app2

app3

app4 S3 (parq) Spectrum

Backfill Historical Data

Steps:
1. Redshift → CSV

2. CSV → Parquet (surprisingly tricky)
3. Parquet → Spectrum table

4. Remove data from Redshift as necessary

Other Stuff:

● Microservice transition: 50%
● Next up: Message Bus

Queue

Queue

Queue

Challenge #1

CSV → Parquet

CSV to Parquet: What Are Your Options?

● AWS How-to

○ EMR + Spark

○ Heavy solution for converting some files? Use 2 r3.8xlarge nodes

○ AWS Big Data Blog

● FastParquet

○ Python

○ Uses Pandas; does not handle nullable integer columns

● Apache Arrow ✔

○ Python/C++

○ Uses reference Parquet implementation, parquet-cpp

○

After a day or two, have a working CSV --> Parquet converter using Arrow

https://github.com/awslabs/aws-big-data-blog/tree/master/aws-blog-spark-parquet-conversion
https://github.com/awslabs/aws-big-data-blog/tree/master/aws-blog-spark-parquet-conversion

Uh Oh

About Parquet Datatypes

● 2 types per column: logical and physical

● Logical: meaning

● Physical: layout

col_name logical_type physical_type

datetime_created timestamp (usec) int64

CSV to Parquet: Timestamps

AWS Support

● Int96: unofficial physical type for timestamp

● Not part of parquet standard, but used by many popular projects - spark, impala, etc.

● Spectrum officially deprecated int96 in favor of int64; int64 support still in progress upstream

● parquet-cpp and arrow: can read but not write int96

CSV to Parquet: Challenge Accepted

● PR’s to arrow and parquet-cpp

● Great experience with both communities

● Working release within a week or two

https://xkcd.com/303/

https://xkcd.com/303/
https://xkcd.com/303/

Challenge #2

Schema Management

Managing Schemas

Redshift

CSV

Parquet

Spectrum

All of these must be compatible
and managed over time

Does not have schema info
embedded
Ordering must be preserved

Modifications alter historical data

Challenges

Heterogenous over time

Validated at query time; must fit
heterogenous parquet data

Possible solution: end-to-end versioning

You Can Control Costs Too
(with less pain)

Spectrum: Takeaways

● Use Parquet (or another columnar format)

● Be careful about data types

● Have a plan for schema changes at each stage

● Use partitioning

● Use small files (no longer necessary?)

 Today: The coldest 20% of our data is in Spectrum

We are now in control of our Redshift costs!

Spectrify

● Easy Mode:

○ Export to CSV

○ S3 CSV → S3 Parquet

○ Create external table

○ Redshift table schema as single-

source-of-truth

● Key Enabling Tech:

○ Pyarrow

■ parquet conversion

○

■

■

https://github.com/hellonarrativ/spectrify

https://github.com/hellonarrativ/spectrify
https://github.com/hellonarrativ/spectrify

Directions for Future Work

● Easy Partitioning

● Schema Versioning

● BigQuery or Athena Support

 Questions?

Thank You

