
TIMO WALTHER, SOFTWARE ENGINEER

DATA ENG CONF, BARCELONA
SEPTEMBER 25, 2018

FLINK SQL IN ACTION

© 2018 data Artisans2

ABOUT DATA ARTISANS

Original Creators of
Apache Flink®

Real-Time Stream Processing
Enterprise-Ready

© 2018 data Artisans3

DATA ARTISANS PLATFORM

data-artisans.com/download

WHAT IS APACHE FLINK?

© 2018 data Artisans5

Event Streams State (Event) Time Snapshots

Core Building Blocks for Stream Processing

real-time and
replay

complex
business logic

consistency with
out-of-order data

and late data

forking /
versioning /
time-travel

© 2018 data Artisans6

WHAT IS A STREAMING ARCHITECTURE?

synchronous reads/writes
across tier boundary

all modifications
are local

Streaming architecture

database
layer

compute
layer

Classic tiered architecture

© 2018 data Artisans7

WHAT IS APACHE FLINK?

Scalable embedded state

Access at memory speed &
scales with parallel operators.

© 2018 data Artisans8

WHAT IS APACHE FLINK?

Queries

Applications

Devices

etc.

Database

Stream

File / Object
Storage

Stateful computations over streams
real-time and historic,

fast, scalable, fault tolerant,
event time, large state, exactly-once

Historic
Data

Streams

Application

© 2018 data Artisans9

HARDENED AT SCALE

Streaming Platform Service
billions messages per day

A lot of Stream SQL

Streaming Platform as a Service
3700+ container running Flink,

1400+ nodes, 22k+ cores, 100s of jobs,
3 trillion events / day, 20 TB state

Fraud detection
Streaming Analytics Platform

1000s jobs, 100.000s cores,
10 TBs state, metrics, analytics,

real time ML,
Streaming SQL as a platform

© 2018 data Artisans10

POWERED BY APACHE FLINK

FLINK SQL

© 2018 data Artisans12

FLINK’S POWERFUL ABSTRACTIONS

Process Function (events, state, time)

DataStream API (streams, windows)

SQL / Table API (dynamic tables)

Stream- & Batch
Data Processing

High-level
Analytics API

Stateful Event-
Driven Applications

val stats = stream
.keyBy("sensor")
.timeWindow(Time.seconds(5))
.sum((a, b) -> a.add(b))

def processElement(event: MyEvent, ctx: Context, out: Collector[Result]) = {
// work with event and state
(event, state.value) match { … }

out.collect(…) // emit events
state.update(…) // modify state

// schedule a timer callback
ctx.timerService.registerEventTimeTimer(event.timestamp + 500)

}

Layered abstractions to
navigate simple to complex use cases

© 2018 data Artisans13

APACHE FLINK’S RELATIONAL APIS

Unified APIs for batch & streaming data

A query specifies exactly the same result
regardless whether its input is

static batch data or streaming data.

tableEnvironment
.scan("clicks")
.groupBy('user)
.select('user, 'url.count as 'cnt)

SELECT user, COUNT(url) AS cnt
FROM clicks
GROUP BY user

LINQ-style Table API ANSI SQL

© 2018 data Artisans14

QUERY TRANSLATION
tableEnvironment

.scan("clicks")

.groupBy('user)

.select('user, 'url.count as 'cnt)

SELECT user, COUNT(url) AS cnt
FROM clicks
GROUP BY user

Input data is
bounded

(batch)

Input data is
unbounded
(streaming)DataSet Rules

DataSet PlanDataSet DataStreamDataStream Plan

DataStream Rules

Calcite Catalog

Calcite Logical Plan

Calcite Optimizer

Calcite
Parser & Validator

Table API SQL API

D
at

aS
et

Ex
te

rn
al

Ta

bl
es

D
at

aS
tre

am

Table API
Validator

© 2018 data Artisans15

WHAT IF “CLICKS” IS A FILE?

Clicks

user cTime url
Mary 12:00:00 https://…

Bob 12:00:00 https://…

Mary 12:00:02 https://…

Liz 12:00:03 https://…

user cnt

Mary 2

Bob 1

Liz 1

SELECT
user,
COUNT(url) as cnt

FROM clicks
GROUP BY user

Input data is
read at once

Result is
produced at once

© 2018 data Artisans16

WHAT IF “CLICKS” IS A STREAM?

user cTime url
user cnt

SELECT
user,
COUNT(url) as cnt

FROM clicks
GROUP BY user

Clicks

Mary 12:00:00 https://…

Bob 12:00:00 https://…

Mary 12:00:02 https://…

Liz 12:00:03 https://…

Bob 1

Liz 1

Mary 1Mary 2

Input data is
continuously read

Result is
continuously updated

The result is the same!

© 2018 data Artisans17

• Usability
‒ANSI SQL syntax: No custom “StreamSQL” syntax.
‒ANSI SQL semantics: No stream-specific results.

• Portability
‒ Run the same query on bounded and unbounded data
‒ Run the same query on recorded and real-time data

• How can we achieve SQL semantics on streams?

now

bounded	query

unbounded	query

past future

bounded	query

start	of	the	stream
unbounded	query

WHY IS STREAM-BATCH UNIFICATION
IMPORTANT?

© 2018 data Artisans18

•Materialized views (MV) are similar to regular views,
but persisted to disk or memory
‒Used to speed-up analytical queries
‒MVs need to be updated when the base tables change

•MV maintenance is very similar to SQL on streams
‒Base table updates are a stream of DML statements
‒MV definition query is evaluated on that stream
‒MV is query result and continuously updated

DATABASE SYSTEMS RUN QUERIES ON STREAMS

© 2018 data Artisans19

CONTINUOUS QUERIES IN FLINK

•Core concept is a “Dynamic Table”
‒Dynamic tables are changing over time

•Queries on dynamic tables
‒produce new dynamic tables (which are updated based on input)
‒do not terminate

• Stream ↔ Dynamic table conversions

19

© 2018 data Artisans20

STREAM ↔ DYNAMIC TABLE CONVERSIONS

• Append Conversions
‒Records are only inserted (appended)

•Upsert Conversions
‒Records have a (composite) unique key
‒Records are upserted/deleted by key

• Retract Conversions
‒Records are inserted/deleted
‒Update = delete old version + insert new version

SELECT user, url
FROM clicks
WHERE url LIKE '%xyz.com'

SELECT user, COUNT(url)
FROM clicks
GROUP BY user

SQL FEATURES

© 2018 data Artisans22

SQL FEATURE SET IN FLINK 1.6.0

• SELECT FROM WHERE
• GROUP BY / HAVING
‒Non-windowed, TUMBLE, HOP, SESSION windows

• JOIN / IN
‒Windowed INNER, LEFT / RIGHT / FULL OUTER JOIN
‒Non-windowed INNER, LEFT / RIGHT / FULL OUTER JOIN

• [streaming only] OVER / WINDOW
‒UNBOUNDED / BOUNDED PRECEDING

• [batch only] UNION / INTERSECT / EXCEPT / ORDER BY

© 2018 data Artisans23

• Support for POJOs, maps, arrays, and other nested types

• Large set of built-in functions (150+)
‒ LIKE, EXTRACT, TIMESTAMPADD, FROM_BASE64, MD5, STDDEV_POP, AVG, …

• Support for custom UDFs (scalar, table, aggregate)

SQL FEATURE SET IN FLINK 1.6.0

See also:
https://ci.apache.org/projects/flink/flink-docs-master/dev/table/functions.html

https://ci.apache.org/projects/flink/flink-docs-master/dev/table/udfs.html

© 2018 data Artisans24

• Streaming enrichment joins (Temporal joins) [FLINK-9712]

• Support for complex event processing (CEP) [FLINK-6935]
‒ MATCH_RECOGNIZE

•More connectors and formats [FLINK-8535]

UPCOMING SQL FEATURES

SELECT
SUM(o.amount * r.rate) AS amount

FROM
Orders AS o,
LATERAL TABLE (Rates(o.rowtime)) AS r

WHERE r.currency = o.currency;

© 2018 data Artisans25

WHAT CAN I BUILD WITH THIS?

• Data Pipelines
‒Transform, aggregate, and move events in real-time

• Low-latency ETL
‒Convert and write streams to file systems, DBMS, K-V stores,

indexes, …
‒ Ingest appearing files to produce streams

• Stream & Batch Analytics
‒Run analytical queries over bounded and unbounded data
‒Query and compare historic and real-time data

• Power Live Dashboards
‒Compute and update data to visualize in real-time

© 2018 data Artisans26

SOUNDS GREAT! HOW CAN I USE IT?
• Embed SQL queries in regular (Java/Scala) Flink applications
‒ Tight integration with DataStream and DataSet APIs
‒Mix and match with other libraries (CEP, ProcessFunction, Gelly)
‒ Package and operate queries like any other Flink application

• Run SQL queries via Flink’s SQL CLI Client
‒ Interactive mode: Submit query and inspect results
‒Detached mode: Submit query and write results to sink system

SQL CLIENT BETA

© 2018 data Artisans28

•Newest member of the Flink SQL family (since Flink 1.5)

INTRODUCTION TO SQL CLIENT

© 2018 data Artisans29

•Goal: Flink without a single line of code
‒ only SQL and YAML

‒ "drag&drop" SQL JAR files for connectors and formats

• Build on top of Flink's Table & SQL API

•Useful for prototyping & submission

INTRODUCTION TO SQL CLIENT

© 2018 data Artisans30

SQL CLIENT CONFIGURATION

See also:
https://ci.apache.org/projects/flink/flink-docs-master/dev/table/sqlClient.html

© 2018 data Artisans31

PLAY AROUND WITH FLINK SQL

SQL Client

Results

C
LI

Submit Query
SELECT
user,
COUNT(url) AS cnt

FROM clicks
GROUP BY user

Gateway

Database /
HDFS

Event Log

Query

StateResults

Submit Job

Catalog

Optimizer

Result Server

Initialized by:
conf/sql-client-defaults.yaml

Initialized by:
--environment my-config.yaml

Modified by DDL commands within session.

Changelog
or Table

© 2018 data Artisans32

SUBMIT DETACHED QUERIES

SQL Client

Target Information

C
LI

Submit Query
INSERT INTO dashboard
SELECT
user,
COUNT(url) AS cnt

FROM clicks
GROUP BY user

Gateway

Database /
HDFS

Event Log

Query

State

Submit Job

Catalog

Optimizer

Result Server

Initialized by:
conf/sql-client-defaults.yaml

Initialized by:
--environment my-config.yaml

Modified by DDL commands within session.

Cluster ID &
Job ID

© 2018 data Artisans33

SERVING A DASHBOARD

Elastic
Search

Kafka

INSERT INTO AreaCnts
SELECT

toAreaId(lon, lat) AS areaId,
COUNT(*) AS cnt

FROM TaxiRides
WHERE isStart
GROUP BY toAreaId(lon, lat)

HTTPS://GITHUB.COM/DATAARTISANS/SQL-TRAINING

ACTION TIME!

© 2018 data Artisans35

SELECT
area,
isStart,
TUMBLE_END(rowTime, INTERVAL '5' MINUTE) AS cntEnd,
COUNT(*) AS cnt

FROM (SELECT rowTime, isStart, toAreaId(lon, lat) AS area
FROM TaxiRides)

GROUP BY
area,
isStart,
TUMBLE(rowTime, INTERVAL '5' MINUTE)

§ Compute every 5 minutes for each area the
number of departing and arriving taxis.

IDENTIFY POPULAR PICK-UP / DROP-OFF
LOCATIONS

© 2018 data Artisans36

SELECT pickUpArea,
AVG(timeDiff(s.rowTime, e.rowTime) / 60000) AS avgDuration

FROM (SELECT rideId, rowTime, toAreaId(lon, lat) AS pickUpArea
FROM TaxiRides
WHERE isStart) s

JOIN
(SELECT rideId, rowTime
FROM TaxiRides
WHERE NOT isStart) e

ON s.rideId = e.rideId AND
e.rowTime BETWEEN s.rowTime AND s.rowTime + INTERVAL '1' HOUR

GROUP BY pickUpArea

§ Join start ride and end ride events on rideId and
compute average ride duration per pick-up location.

AVERAGE RIDE DURATION PER PICK-UP
LOCATION

© 2018 data Artisans37

SUMMARY

•Unification of stream and batch is important.

• Flink’s SQL solves many streaming and batch use cases.
• Runs in production at Alibaba, Uber, and others.
•Query deployment as application or via CLI

•Get involved, discuss, and contribute!

THANK YOU!
@twalthr
@dataArtisans
@ApacheFlink WE ARE HIRING

data-artisans.com/careers

Available on O’Reilly Early Release!

