
dbt (data build tool)
powerful, open source data

transformations

Connor McArthur
September 25, 2018

At Fishtown Analytics, our goal is to
improve the way analytics work is done.

We run a consultancy, and work with
some awesome companies worldwide.

We build a few products, most notably
dbt (data build tool).

We're based in Philadelphia, PA, USA.

We are practitioners

We do analytics, data science, and data engineering work with
our clients.

This talk and dbt itself are both heavily informed by the needs
of our employees and users as practitioners.

What do data engineers do?

What do data engineers do?

Organizationally, they fill two roles:

1. Shepherds: we shepherd the organization's data
2. Librarians: we understand the data catalog

As engineers do, we automate as much as we can…

...but we often don't do enough!

Case Study

I worked with a medium sized hardware + software tech
company for about 6 months.

The data team at that time consisted of:

1 data engineer

1 data analyst

their manager

Other Pipelines,
SQL Scripts

Other Pipelines,
SQL Scripts

Other Pipelines,
SQL Scripts

Berlin

Madrid

Rome

Paris

Bucharest

Warsaw

Very Large
Redshift Cluster

PDTs

Other Pipelines,
SQL Scripts

Berlin

Madrid

Rome

Paris

Bucharest

Warsaw

Very Large
Redshift Cluster

PDTs

Their data engineer owned this part Their analyst used this part

Other Pipelines,
SQL Scripts

Other Pipelines,
SQL Scripts

Other Pipelines,
SQL Scripts

Other Pipelines,
SQL Scripts

"Engineers must deploy platforms, services,
abstractions, and frameworks that allow the data
scientists to conceive of, develop, and deploy their
ideas with autonomy."

Engineers Shouldn’t Write ETL: A Guide to Building a High Functioning Data Science
Department, 2016, Jeff Magnusson

https://multithreaded.stitchfix.com/blog/2016/03/16/engineers-shouldnt-write-etl/

https://multithreaded.stitchfix.com/blog/2016/03/16/engineers-shouldnt-write-etl/

The big idea

What if we gave our analysts:

1. A transformation platform of their own in addition to
bespoke pipelines

2. A data catalog in place of answering data lineage questions
directly

This would save our data engineers time, and would let our
analysts contribute materially to the transformations.

Berlin

Madrid

Rome

Paris

Bucharest

Warsaw

The data engineer owns this part The analysts own this part

Other Pipelines,
SQL Scripts

Other Pipelines,
SQL Scripts

Other Pipelines,
SQL Scripts

Other Pipelines,
SQL Scripts

Transformed
Data

???

Raw
Data

dbt (data build tool) is an open source, command line based,
transformation tool.

Designed for all of the SQL authors at your organization.

~2 years old, >250 weekly active projects.

100% free and open source. You can install with pip
install dbt, or learn more at https://www.getdbt.com.

https://www.fishtownanalytics.com

Overview

dbt is a developer tool. Your team members use a terminal and
text editor of their choice. (NOT VIM)

They write SQL transformations, then execute them, then
automated test them, then validate & deploy them.

When using dbt, your analysts behave like software
developers.

SQL Warehouses

dbt supports SQL only. But, modern data warehouses can
handle a lot!

It works with:

● Postgres: snappy performance for minimal spend
● Amazon Redshift: up to and around one billion rows
● Snowflake and Google Bigquery: many billions of rows

(Wanted: experts in other warehouse tech)

Write SQL
Text Editor

Execute SQL
dbt run

Validation
dbt docs + SQL

Automated Test
dbt test

Transformations

The atomic unit of
transformation in dbt is called a
model.

Each model lives in one SQL file
stored in a git repository.

build "accounts"
$ dbt run --model accounts

accounts.sql

1 | select
2 | id as account_id,
3 | case when pid = 1
4 | then 'free'
5 | ...
6 | end as plan_name
7 | from accounts

Models Build on Models

Every dbt model defines all of its inputs using
a special Jinja function called ref().

dbt analyzes these to build up a directed
acyclic graph (DAG) of your models. Then, dbt
can build any subgraph you'd like in the
proper order.

$ dbt run --models +identity+

Write SQL
Text Editor

Execute SQL
dbt run

Validation
dbt docs + SQL

Automated Test
dbt test

Command Line Interface

dbt can select different parts of the DAG to execute.

run all the models
$ dbt run

run one specific model
$ dbt run --models <model-name>

run a model and those that depend on it
$ dbt run --models <model-name>+

This works the same way everywhere.

Materializations

Materializations define how to
turn a model into a warehouse
object. dbt has some built-in:

● view: CREATE VIEW AS
● table: CREATE TABLE AS
● incremental: DELETE

outdated records, INSERT
new records

{{config(
 materialized='table'
)}}

 select
 ...
 from accounts

is rendered to:

 CREATE TABLE ... AS (
 select
 ...
 from accounts
);

Incremental Models

id: 1, name: Connor, updatedAt: 3/1/2018

id: 2, ...

id: 3, ...

id: 4, ...

id: 5, ...

id: 6, ...

id: 7, ...

id: 8, ...

id: 9, ...

id: 10, ...

id: 11, ...

id: 12, ...

id: 1, name: Connor, updatedAt: 1/1/2018

id: 2, ...

id: 3, ...

id: 4, ...

id: 5, ...

id: 6, ...

id: 7, ...

id: 8, ...

id: 9, ...

Source Table Destination Table

Write SQL
Text Editor

Execute SQL
dbt run

Validation
dbt docs + SQL

Automated Test
dbt test

Testing

In software development, we want automated tests to prevent
bugs from hitting production.

In a warehouse context, automated tests can catch things like

● bad calculations
● bad joins / fanouts
● schema mismatches

dbt provides this functionality via tests of two kinds.

SQL Tests

dbt tests are SELECT statements that grab failing records.

test.sql

select *
from {{ref('accounts')}}
where id is not null

with test_query as (
 select *
 from accounts
 where id is not null
)

select count(*)
from test_query

Schema Tests

Replace constraints in a
traditional RDBMS.

Out of the box, you can test
Uniqueness, Not Null, and
Foreign Key constraints.

You can also define custom
schema tests.

schema.yml

models:
 - name: accounts
 columns:
 - name: id
 tests:
 - unique
 - not_null

Schema Tests

schema.yml

models:
 - name: accounts
 columns:
 - name: id
 tests:
 - unique
 - not_null

$ dbt test --models accounts

Concurrency: 1 threads
1/2 unique_accounts_id [RUN]
1/2 unique_accounts_id [PASS
in 0.02s]

...

Write SQL
Text Editor

Execute SQL
dbt run

Validation
dbt docs + SQL

Automated Test
dbt test

Auto-documentation

dbt ships with a documentation generator. It inspects:

● The contents of your project
● The metadata provided in schema.yml files
● The relations in your warehouse

It uses this data to create a fully interactive catalog for your
warehouse.

Deployment

Repeatability

Repeatability a key feature of dbt -- running dbt twice on the
same set of inputs should always yield the same result.

This means each user can:

● Build feature branches in development,
● Then run continuous integration processes,
● Then deploy to production.

Just as you would with any other software project.

Continuous Integration & Deployment

Our users have deployed dbt with:

● Sinter, a SaaS backend for
dbt that we developed

● Airflow
● Kubernetes
● Cron
● Jenkins
● Gitlab CI

● CircleCI
● Travis CI
● … and more

Demo

Thanks for listening!

Find out more at:
www.getdbt.com

http://www.getdbt.com

Image Credits

Slide 2: Screenshot taken from Google Maps https://maps.google.com/

Slide 8, 9, 12: Looker logo property of Looker Data Sciences, Inc.® https://looker.com/

Slide 13, 42: dbt logo property of Fishtown Analytics https://fishtownanalytics.com

Slide 18, 19, 20, 32, 33, 34, 35, 36, 37: screenshots of dbt docs property of Fishtown Analytics

https://fishtownanalytics.com

https://maps.google.com/
https://looker.com/
https://fishtownanalytics.com
https://fishtownanalytics.com

