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How Bad is This Problem?
Growing gap between memory/processing makes 
traditional way of combining functions worse

data = pandas.parse_csv(string)

filtered = pandas.dropna(data)

avg = numpy.mean(filtered)

parse_csv

dropna

mean

Up to 30x slowdowns in NumPy, Pandas, TensorFlow, etc. 
compared to an optimized C implementation
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Data Science Today

Weld’s vision: bare metal performance for 
data science out of the box!

Data scientists “pip install” libraries needed 
for prototype/get the job done

Observe performance issues in 
pipelines composed of fast data 

science tools

Hire engineers to optimize your 
pipeline, leverage new hardware, etc.
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Weld: An Optimizing Runtime

 0.1  1  10  100

Native (1T)

No Fusion (1T)

No CLO (1T)

Weld (1T)

Weld (12T)

Runtime [secs; log10]

Filter Dataset à Compute a Linear Model à Aggregate Indices
Uses NumPy and Pandas (both backed by C)
~180x Speedup with automatic parallelization

(eliminates cross-library memory movement, co-optimizes library calls)
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Weld Architecture

machine 
learningSQL graph 

algorithms

CPU GPU

…
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Weld IR

Backends

Runtime API

Optimizer
Weld
runtime



Rest of this Talk

Runtime API – How applications “speak” with 
Weld

Weld IR – How applications express 
computation

Results

Demo

www.weld.rs



Runtime API
Uses lazy evaluation to collect work across libraries

data = lib1.f1()
lib2.map(data,

item => lib3.f2(item)
)

User Application Weld Runtime

Combined IR
program

Optimized
machine code

1101110
0111010
1101111

IR fragments
for each function

Runtime
API

f1

map

f2

Data in 
Application
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import itertools as it
squares = it.map(data, |x| x * x)
sum = sqrt(it.reduce(squares, 0, +))

data squares

sum

Each call reads/writes memory
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With Weld
import itertools as it
squares = it.map(data, |x| x * x)
sum = sqrt(it.reduce(squares, 0, +))

map reduce

WeldObject

sqrt

Optimized Program

sqrt(reduce(…))

sum

Evaluate the optimized program once



Weld IR: Expressing 
Computations
Designed to meet three goals:

1. Generality
support diverse workloads and nested calls

2. Ability to express optimizations
e.g., loop fusion, vectorization, and loop tiling

3. Explicit parallelism and targeting parallel 
hardware



Weld IR: Internals
Small IR* with only two main constructs.

Parallel loops: iterate over a dataset

Builders: declarative objects for producing results
» E.g., append items to a list, compute a sum
» Can be implemented differently on different hardware



Weld IR: Internals
Small IR* with only two main constructs.

Parallel loops: iterate over a dataset

Builders: declarative objects for producing results
» E.g., append items to a list, compute a sum
» Can be implemented differently on different hardware

Captures relational algebra, functional APIs like 
Spark, linear algebra, and composition thereof
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Examples: Functional Ops

Functional operators using builders

def map(data, f):
builder = new appender[i32]
for x in data:

merge(builder, f(x))
result(builder) 

def reduce(data, zero, func): 
builder = new merger[zero, func]
for x in data:

merge(builder, x)
result(builder)



Example Optimizations
squares = map(data, |x| x * x)
sum = reduce(data, 0, +)

bld1 = new appender[i32]
bld2 = new merger[0, +]
for x: simd[i32] in data:

merge(bld1, x * x)
merge(bld2, x)

Loops can be merged into one pass over data 
and vectorized



Other Features
Interactive REPL for debugging Weld programs
Serialization/Deserialization operators for Weld data
Configurable memory limit and thread limit
Trace Mode for tracing execution at runtime to catch bugs
Rich logging for easy debugging
Utilities for generating C bindings to pass data into Weld
C UDF Support for calling arbitrary C functions
Ability to Dump Code for debugging
Syntax Highlighting support for Vim
Type Inference in Weld IR to simplify writing code manually for testing
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APIs in C and Python (with Java coming soon)
• Full LLVM-based CPU backend SIMD support

Written in ~30K lines of Rust, LLVM, C++
• Fast, safe native language with no runtime



Implementation

Partial Prototypes of Pandas, NumPy, 
TensorFlow and Apache Spark

APIs in C and Python (with Java coming soon)
• Full LLVM-based CPU backend SIMD support

Written in ~30K lines of Rust, LLVM, C++
• Fast, safe native language with no runtime



Grizzly

A subset of Pandas integrated with Weld
Operators include unique, filter, mask, group_by, 
pivot_table

Transparent single-core and multi-core speedups

Interoperates with Pandas with same API



Grizzly in Action

Adapted from http://pandas.pydata.org/pandas-docs/stable/tutorials.html (chapter 7)



Grizzly in Action
import pandas as pd

# Read dataframe from file
requests = pd.read_csv(‘filename.csv’)

# Fix requests with extra digits
requests['Incident Zip'] = requests['Incident Zip'].str.slice(0, 5)

# Fix requests with 00000 zipcodes
zero_zips = requests['Incident Zip'] == '00000’
requests['Incident Zip'][zero_zips] = np.nan

# Display unique incident zips
print requests['Incident Zip'].unique()

Adapted from http://pandas.pydata.org/pandas-docs/stable/tutorials.html (chapter 7)



Grizzly in Action
import pandas as pd
import grizzly as gr

# Read dataframe from file
requests = gr.DataFrameWeld(pd.read_csv(‘filename.csv’))

# Fix requests with extra digits
requests['Incident Zip'] = requests['Incident Zip'].str.slice(0, 5)

# Fix requests with 00000 zipcodes
zero_zips = requests['Incident Zip'] == '00000’
requests['Incident Zip'][zero_zips] = np.nan

# Display unique incident zips
print requests['Incident Zip'].unique()

Adapted from http://pandas.pydata.org/pandas-docs/stable/tutorials.html (chapter 7)

Pandas for I/O
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Integration Effort

Small up front cost to enable Weld integration
• 500 LoC for each library we prototyped

Easy to port over each operator
• 30 LoC each

Incrementally Deployable
• Weld-enabled ops work with native ops
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NumPy Black Scholes workload:
Incremental benefits with incremental integration.

Implementing more operators



Demo.



Conclusion
Changing the interface between libraries can speed up 
data analytics applications by 10-100x on modern 
hardware

Try out Weld for yourself, or contribute!

https://www.github.com/weld-project

https://www.weld.rs

$ pip install pyweld
$ pip install pygrizzly
$ pip install weldnumpy


