
Unified Pipeline Architecture

Erin Palmer
Applied Data Scientist @ Spotify

1

Unified Pipeline Architecture:
The Evolution of Data Processing at Spotify.

What’s Spotify, and What Data
Do We Process in Creator?

Spotify Fan Insights

EndSong
● Log record containing:

○ trackGid
○ userId
○ Ms Played
○ Time started
○ Play Context
○ Location
○ Etc

● From it we can derive most of the useful information for listening history

What’s Our Primary Source?

● User Meta Data
● Playlist Snapshot
● Artist/Track Meta Data
● etc

Secondary Sources

Characteristics
● Independent code paths compute

necessary endpoints
● Each endpoint has 3-6 intermediate

computation stages
● Intermediate Data is not reusable

Current Architecture

Advantages
● Very Flexible
● New pipelines can be easily built
● Adaptable to constantly changing requirements

Current Architecture

Issues
● Redundant Dependencies
● Multi-layer dependencies cause cascading effects if

there are any issues/delays
● Inconsistencies

Current Architecture

Spotify
11

TitleRedundant
Dependencies

Redundant
Dependencies

Data
Inconsistencies

Current Architecture

End Song

All Song
Listeners

All Playlist Song
Listeners

Spotify
15

Duplicative
Data Sets

Listeners by Song

Listeners by Playlist

End Song

Spotify
16

Duplicative
Data Sets

Spotify
17

Considerations

1. Can we only read each source once?
2. How can we reduce the computation

time?
3. Can we join in all the secondary sources

as they comes, rather than waiting until
the end of the day?

4. Retain flexibility to add new datasets or
new fields

New Architecture

End Song
End Song

Track Artist

● Sources (EndSong)
● Entities
● Datasets
● Exports (Entries in a DB)

Architecture Components

Spotify
20

Entities

Datasets

Exports

Raw Data

Spotify
21

Entities

Datasets

Exports

Raw Data

Spotify
22

Entities

Datasets

Exports

Raw Data

Spotify
23

Entities

Datasets

Exports

Raw Data

Spotify
24

Entities

Datasets

Exports

Raw Data

● Google Computing Engine
○ Google Cloud Store
○ Dataflow
○ Datastore

● Framework: Scala / Scio
○ Built on top of Google’s Dataflow

● Schema: Protobufs
○ Easy Iteration
○ Built in versioning

Pipeline Architecture

Scio
Ecclesiastical Latin IPA: /ˈʃi.o/, [ˈʃiː.o], [ˈʃi.i ̯o]

Verb: I can, know, understand, have knowledge.

Dataflow
● Hosted, fully managed, no ops
● GCP ecosystem - BigQuery,

Bigtable, Datastore, Pubsub
● Unified batch and streaming model

Google Dataflow with Scala => Scio

Scala
● High Level DSL
● Functional Programing is a natural fit

for data
● Numerical Libraries: Breeze, Algebird

val sc = ScioContext()
sc.textFile("shakespeare.txt")
 .flatMap { _
 .split("[^a-zA-Z']+")
 .filter(_.nonEmpty)
 }
 .countByValue
 .saveAsTextFile("wordcount.txt")
sc.close()

Example: Word Count

Why Protobufs?
● Land themselves to high level schema

organization
● Easy to read and manipulate
● Features

○ Allows repeated fields
○ Field numerical tags allow for

schema compatibility
○ Can be built to be arbitrarily

large
● Protobufs are compact when stored:

they are serialized into binary format

Protocol Buffers

Example
// Next ID: 6
message AggregateKeyPB {
 enum Type {
 TRACK = 0;
 ARTIST = 1;
 }
 optional Type type = 1;
 optional string identifier = 2;
 optional string date = 3;

 // Geo and Listener type are part of the key
 optional GeographyInfoPB location = 4;
 optional ListenerTypePB listenerType = 5;
}

// Next ID: 3
message AggregateListenersByGeoPB {
 optional AggregateKeyPB key = 1;
 optional DataByTimeframePB listeners = 2;
}

Spotify

Architecture

Spotify
31 Entities Datasets

Entities Layer

Spotify
33

Spotify
34

Spotify
35

Spotify for Artists

Dataset Layer

Spotify
37

Spotify
38

Spotify
39

Spotify for Artists

Export Layer

Datastore Storage Model

● Unified Pipeline Architecture allows you to parallelize your processing
while consolidating the logic
○ No redundant computations

● Minimize Number of joins
● Read in sources only once and decorate them once for further

processing
● Think About the Future!

Conclusions

● Come to my office hours!
● My colleague: Deepti Deshpande will also be there to help answer

questions

Questions?

