
Predicting chaotic systems with
sparse data

lessons from numerical weather prediction
David Kelly, Courant Institute, NYU

1

A toy atmospheric model

ẋ = �(y � x)

ẏ = x(⇢� z)� y

ż = xy � �z

We have a three dimensional variable evolving in
time, governed by a differential equation called the
Lorenz model

(x, y, z)

The model is chaotic: an uncertain estimate of
the current state becomes more uncertain over
time

2

3

A single trajectory

4

An ensemble of trajectories

Small errors in the initial
state will get larger over
time

5

Suppose that we make a partial observation of
the ‘true’ trajectory every seconds ⌧

Can we combine the model and the data to
improve the estimate of the current state?

x(n⌧) + ⇠n n = 1, 2, . . .

where is a source of observational noise.⇠n

Assimilating the x data

6

The blue curve
is the true
trajectory
The dots are
an ensemble
of state
estimates

The state estimates synchronize with the true state

Not just for toy models …

7

This precise idea is used in numerical weather
prediction (any many many more applications)

The model can be extremely high dimensional (~
10^9 variables).

The NWP model is a family of layered, discretized
partial differential equations (PDEs).

Not just for toy models …

8

Enormous amounts of observational data, that are
accurate (small noise) but very sparse (we do not
observe the whole ocean, the small scales)

Observational data is not simply ‘observing the x
variable’, but complicated functions of many
variables (eg. how does this GPS enabled buoy
move through the ocean?)

The next 25 slides

1. The math behind data assimilation
2. The linear model scenario
3. The nonlinear model scenario

9

The math of data
assimilation

10

11

We are tracking a d-dimensional vector whose
motion is governed by the discrete time
random dynamical system

un

un+1 = (un) + ⌘n

where is iid Gaussian noise (zero in the
Lorenz example) and is a deterministic map.

⌘n ⇠ N(0,⌃)

The initial state is unknown exactly, but known to
be distributed like a Gaussian

u0

u0 ⇠ N(m0, C0)

The model

12

We make a partial, noisy observation at every time
step

where is idd Gaussian noise and is
the observation function

⇠n+1 ⇠ N(0,�) h

The data

zn+1 = h(un+1) + ⇠n+1

Bayes formula

13

By Bayes’ formula we have

The state is a random variable. We would like
to know the conditional distribution of given all the
data up to time n

un

Zn = {z1, z2, . . . , zn}
un

P (un+1|Zn+1) = P (un+1|Zn, zn+1)

=
P (zn+1|un+1, Zn)P (un+1|Zn)

P (zn+1|Zn)

=
P (zn+1|un+1)P (un+1|Zn)

P (zn+1|Zn)

The filtering cycle

14

P (un|Zn) 7! P (un+1|Zn+1)

Ignoring the normalization constant …

We can use this formula to perform an update
procedure:

which is called the filtering cycle.

P (un+1|Zn+1) / P (zn+1|un+1)P (un+1|Zn)

15

x

y

obs

The conditional distribution
at time n

P (un|Zn)

16

P (un+1|Zn)

The ‘forecast’ distribution
(ie. the prior)

x

y

obs

 (un) + ⌘n

17

x

y

obs

Make an observation
(here just the x variable)

18

x

y

obs

Re-weight the
forecast distribution
with the likelihood of
the observation

P (un+1|Zn+1) / P (zn+1|un+1)P (un+1|Zn)

The green
distribution is
the posterior

In the linear model
scenario, everything has

a formula!

19

The Kalman filter

20

When the dynamics and the observation function
are both linear, the conditional random variable
is a Gaussian and is characterized completely by its
mean and covariance

 h
un|Zn

(mn, Cn)

The mean and covariance satisfy a recursion formula

mn+1 = (I �Kn+1H) (mn) +Kn+1zn+1

Cn+1 = (I �Kn+1H)(Cn
T + ⌃)

The Kalman gain is the correct convex
combination of model and data, it is determined by the
forecast and data covariances.

Kn+1

What can we do for
nonlinear models?

21

3DVAR algorithm

22

mn+1 = (I �KH) (mn) +Kzn+1

Obtain a state estimate using the Kalman update
formula

mn

Since the model is nonlinear, distributions are no
longer Gaussian and there is no ‘correct’ choice for
the Kalman gain

23

H = (1, 0, 0),K = (1, 1, 1)T

m

n+1 =

2

4
x((n+ 1)⌧) + ⇠

n+1

y

(m
n

) + (x((n+ 1)⌧) + ⇠

n+1 �

x

(m
n

))

z

(m
n

) + (x((n+ 1)⌧) + ⇠

n+1 �

x

(m
n

)

3

5

24

The 3DVAR algorithm is accurate (if properly tuned): in
that the estimates get closer to the true state when
observational noise is small and when enough
variables are observed.

The Ensemble Kalman filter (EnKF) uses an ensemble
of ‘particles’ to find a state estimate and quantify the
uncertainty of the estimate.

When the observations are sparse, we cannot expect
accuracy. Instead we would like a set of samples from
the posterior.

P (un|Zn)

25

The EnKF maintains an ensemble
to represent the whole posterior and not just the mean

{u(1)
n , u(2)

n , . . . , u(K)
n }

Each particle is updated much like the 3DVAR
u
(k)
n+1 = (I �Kn+1H) (u(k)

n) +Kn+1zn+1

But the Kalman gain is chosen using the empirical
covariance of the ‘forecast ensemble’

{ (u(1)
n), , . . . , (u(K)

n)}

26

x

y

obs

The ensemble
represents the posterior
at time n

{u(1)
n , u(2)

n , . . . , u(K)
n }

27

x

y

obs

The forecast ensemble
{ (u(1)

n), , . . . , (u(K)
n)}

P (un+1|Zn)

represents the distribution

28

x

y

obs

Ensemble updated to
{u(1)

n+1, . . . , u
(K)
n+1}

To incorporate the
observation

The convex combination uses
the forecast covariance

29

The Canadian Weather Bureau uses EnKF for
operational NWP, with around 100 particles for a
~ 10^9 dimensional state variable (!!!)

EnKF works surprisingly well with high
dimensional models that are effectively lower
dimensional.

The covariance of the forecast ensemble

{ (u(1)
n), , . . . , (u(K)

n)}

only represents the directions of highest model
variation. Often much smaller dimension than
state.

EnKF and the Sombrero SDE

30

du = �rV (u)dt+ �dW

Consider the two dimensional stochastic
differential equation u = (x,y)

with the ‘Sombrero potential’ V (x, y) = (1� x

2 � y

2)2

And we only observe the x variable

31

EnKF - only observing x, big red star is true state

32

EnKF - exact same truth, different model noise

33

Particle filter - sampling from the posterior, not
just tracking the truth

Pros and cons

34

Kalman filter - very efficient, but requires
linearity. Can be expensive in high
dimensions.

3DVAR - very efficient, requires tuning and
has no uncertainty quantification

EnKF - very efficient, works in high
dimensions, provides UQ but not for non-
Gaussians

Particle filter - samples from the posterior,
but very inefficient in high dimensions.

Thank you for
listening!

Slides are on my website dtbkelly.com

35

http://dtbkelly.com

