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A toy atmospheric model

ẋ = �(y � x)

ẏ = x(⇢� z)� y

ż = xy � �z

We have a three dimensional variable             evolving in 
time, governed by a differential equation called the 
Lorenz model

(x, y, z)

The model is chaotic: an uncertain estimate of 
the current state becomes more uncertain over 
time 
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A single trajectory
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An ensemble of trajectories

Small errors in the initial 
state will get larger over 
time
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Suppose that we make a partial observation of 
the ‘true’ trajectory every    seconds ⌧

Can we combine the model and the data to 
improve the estimate of the current state?  

x(n⌧) + ⇠n n = 1, 2, . . .

where      is a source of observational noise.⇠n



Assimilating the x data
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The blue curve 
is the true 
trajectory
The dots are 
an ensemble 
of state 
estimates

The state estimates synchronize with the true state



Not just for toy models … 
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This precise idea is used in numerical weather 
prediction (any many many more applications)

The model can be extremely high dimensional ( ~ 
10^9 variables). 

The NWP model is a family of layered, discretized 
partial differential equations (PDEs). 



Not just for toy models … 
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Enormous amounts of observational data, that are 
accurate (small noise) but very sparse (we do not 
observe the whole ocean, the small scales) 

Observational data is not simply ‘observing the x 
variable’, but complicated functions of many 
variables (eg. how does this GPS enabled buoy 
move through the ocean?)



The next 25 slides

1. The math behind data assimilation 
2. The linear model scenario 
3. The nonlinear model scenario  
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The math of data 
assimilation
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We are tracking a d-dimensional vector      whose  
motion is governed by the discrete time  
random dynamical system

un

un+1 =  (un) + ⌘n

where                        is iid Gaussian noise (zero in the 
Lorenz example) and      is a deterministic map. 

⌘n ⇠ N(0,⌃)
 

The initial state      is unknown exactly, but known to 
be distributed like a Gaussian  

u0

u0 ⇠ N(m0, C0)

The model
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We make a partial, noisy observation at every time 
step

where                          is idd Gaussian noise and    is 
the observation function  

⇠n+1 ⇠ N(0,�) h

The data

zn+1 = h(un+1) + ⇠n+1



Bayes formula
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By Bayes’ formula we have 

The state      is a random variable. We would like  
to know the conditional distribution of       given all the 
data up to time n  

un

Zn = {z1, z2, . . . , zn}
un

P (un+1|Zn+1) = P (un+1|Zn, zn+1)

=
P (zn+1|un+1, Zn)P (un+1|Zn)

P (zn+1|Zn)

=
P (zn+1|un+1)P (un+1|Zn)

P (zn+1|Zn)



The filtering cycle
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P (un|Zn) 7! P (un+1|Zn+1)

Ignoring the normalization constant … 

We can use this formula to perform an update 
procedure:

which is called the filtering cycle. 

P (un+1|Zn+1) / P (zn+1|un+1)P (un+1|Zn)
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x

y

 

obs

The conditional distribution 
at time n

P (un|Zn)



16

P (un+1|Zn)

The ‘forecast’ distribution 
(ie. the prior)

x

y

obs

 (un) + ⌘n
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x

y

obs

Make an observation 
(here just the x variable)
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x

y

obs

Re-weight the 
forecast distribution 
with the likelihood of 
the observation

P (un+1|Zn+1) / P (zn+1|un+1)P (un+1|Zn)

The green 
distribution is 
the posterior



In the linear model 
scenario, everything has 

a formula!
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The Kalman filter
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When the dynamics     and the observation function  
are both linear, the conditional random variable                
is a Gaussian and is characterized completely by its 
mean and covariance 

 h
un|Zn

(mn, Cn)

The mean and covariance satisfy a recursion formula

mn+1 = (I �Kn+1H) (mn) +Kn+1zn+1

Cn+1 = (I �Kn+1H)( Cn 
T + ⌃)

The Kalman gain          is the correct convex 
combination of model and data, it is determined by the 
forecast and data covariances.

Kn+1



What can we do for 
nonlinear models?
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3DVAR algorithm
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mn+1 = (I �KH) (mn) +Kzn+1

Obtain a state estimate       using the Kalman update 
formula 

mn

Since the model is nonlinear, distributions are no 
longer Gaussian and there is no ‘correct’ choice for 
the Kalman gain
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H = (1, 0, 0),K = (1, 1, 1)T

m
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The 3DVAR algorithm is accurate (if properly tuned): in 
that the estimates get closer to the true state when 
observational noise is small and when enough 
variables are observed.

The Ensemble Kalman filter (EnKF) uses an ensemble 
of ‘particles’ to find a state estimate and quantify the 
uncertainty of the estimate. 

When the observations are sparse, we cannot expect 
accuracy. Instead we would like a set of samples from 
the posterior. 

P (un|Zn)



25

The EnKF maintains an ensemble              
to represent the whole posterior and not just the mean                

{u(1)
n , u(2)

n , . . . , u(K)
n }

Each particle is updated much like the 3DVAR
u
(k)
n+1 = (I �Kn+1H) (u(k)

n ) +Kn+1zn+1

But the Kalman gain is chosen using the empirical 
covariance of the ‘forecast ensemble’  

{ (u(1)
n ), , . . . , (u(K)

n )}
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x

y

 

obs

The ensemble        
represents the posterior 
at time n

{u(1)
n , u(2)

n , . . . , u(K)
n }
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x

y

obs

The forecast ensemble               
{ (u(1)

n ), , . . . , (u(K)
n )}

P (un+1|Zn)

represents the distribution
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x

y

obs

Ensemble updated to 
{u(1)

n+1, . . . , u
(K)
n+1}

To incorporate the 
observation

The convex combination uses 
the forecast covariance 
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The Canadian Weather Bureau uses EnKF for 
operational NWP, with around 100 particles for a 
~ 10^9 dimensional state variable (!!!)

EnKF works surprisingly well with high 
dimensional models that are effectively lower 
dimensional. 

The covariance of the forecast ensemble

{ (u(1)
n ), , . . . , (u(K)

n )}

only represents the directions of highest model 
variation. Often much smaller dimension than 
state.



EnKF and the Sombrero SDE
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du = �rV (u)dt+ �dW

Consider the two dimensional stochastic  
differential equation u = (x,y)

with the ‘Sombrero potential’ V (x, y) = (1� x

2 � y

2)2

And we only observe the x variable
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EnKF - only observing x, big red star is true state
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EnKF - exact same truth, different model noise
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Particle filter - sampling from the posterior, not 
just tracking the truth



Pros and cons
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Kalman filter - very efficient, but requires 
linearity. Can be expensive in high 
dimensions.

3DVAR - very efficient, requires tuning and 
has no uncertainty quantification

EnKF - very efficient, works in high 
dimensions, provides UQ but not for non-
Gaussians

Particle filter - samples from the posterior, 
but very inefficient in high dimensions.



Thank you for 
listening!

Slides are on my website dtbkelly.com
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http://dtbkelly.com

