
@cockroachdb

CockroachDB: Scalable, Survivable, Consistent, SQL

Building a Cloud-Native SQL Database

presented by Alex Robinson / Member of the Technical Staff

@cockroachdb

What is “Cloud-Native”?

@cockroachdb

■ Horizontally scalable

■ Built to handle failures

○ No single point of failure

■ Survivable (self-healing)

■ Minimal operator overhead (automatable)

■ Decoupled from underlying platform

What is “Cloud-Native”?

@cockroachdb

■ Can’t scale out (monolithic)

■ Not designed to recover from failures

○ Single point of failure

○ Can’t spread across availability zones

○ Manual recovery/failover

■ Tied to a particular platform

What isn’t “Cloud-Native”?

@cockroachdb

■ Sounds a lot like many NoSQL DBs, right?

○ Replication, scaling out, tolerating failures

■ But what are they lacking?

Cloud-native databases

@cockroachdb

Existing database solutions place an undue burden on

application developers:

■ Scale (sql)

■ Fault tolerance (sql)

■ Limited transactions (nosql)

■ Limited indexes (nosql)

■ Consistency issues (nosql)

Database Limitations

@cockroachdb

Why should you care about
consistency or transactions?

@cockroachdb

■ Reasoning about eventual consistency is hard

○ Wastes developer time

○ Causes bugs

■ Avoid stale reads or data loss on failover

■ Enables true SQL support

Strong Consistency

@cockroachdb

“We believe it is better to have application programmers deal with

performance problems due to overuse of transactions as bottlenecks

arise, rather than always coding around the lack of transactions”

 -Authors of Google’s Spanner paper

Transactions

@cockroachdb

Why is this hard?

@cockroachdb

■ Fundamentally, coordination is very difficult

○ Especially when time is involved

○ Building a database is hard enough as it is

■ It’s tough to pair consistency with performance

and scalability

Why is getting the best of both worlds so hard?

@cockroachdb

How does CockroachDB do it?

@cockroachdb

1. Data distribution and replication

2. Consensus protocol (Raft)

3. Distributed transaction model

How does CockroachDB do it?

@cockroachdb

Architecture (high-level)

SQL

Transactional KV

Distribution

Replication

Storage

Abstraction stack:

@cockroachdb

Data Distribution SQL

Transactional KV

Distribution

Replication

Storage

@cockroachdb

Two key questions:

■ At what granularity is data distributed?
■ How do I locate a particular piece of data?

The primary options:

Hashing or Order-Preserving

Data Distribution

@cockroachdb

Data Distribution: Order-Preserving

The alternative to hashing is an order-preserving
data distribution:

■ Pro: efficient scans
■ Con: requires additional indexing

@cockroachdb

Data Distribution: Order-Preserving

Each shard contains a contiguous segment of the
key space

Ø-lem

apricot

banana

blueberry

cherry

grape

lem-pea

lemon

lime

mango

melon

orange

pea-∞

peach

pear

pineapple

raspberry

strawberry

@cockroachdb

Data Distribution: Order-Preserving

We need an indexing structure to locate a range

Ø-lem

apricot

banana

blueberry

cherry

grape

lem-pea

lemon

lime

mango

melon

orange

pea-∞

peach

pear

pineapple

raspberry

strawberry

Ø-lem lem-pea pea-∞

shard index

@cockroachdb

Data Distribution: Order-Preserving

Scans (fruits >= “cherry” AND <= “mango”) are
efficient

Ø-lem

apricot

banana

blueberry

cherry

grape

lem-pea

lemon

lime

mango

melon

orange

pea-∞

peach

pear

pineapple

raspberry

strawberry

Ø-lem lem-pea pea-∞

shard index

@cockroachdb

Data Distribution: Order-Preserving

Split when a shard is too large

Ø-lem

apricot

banana

blueberry

cherry

grape

lem-pea

lemon

lime

mango

melon

orange

pea-str

peach

pear

pineapple

raspberry

Ø-lem lem-pea

shard index

str-∞

strawberry

tamarillo

tamarind

str-∞pea-str

@cockroachdb

Data Distribution: Placement

Each range is replicated

to three or more nodes
Node 1

Range 1

Range 2

Node 2
Range 1

Range 2

Node 3
Range 1

Range 2Range 3 Range 3

Range 2

Range 3

@cockroachdb

Adding a new

(empty) node

Data Distribution: Rebalancing

Node 1
Range 1

Range 2

Node 2
Range 1

Range 2

Node 3
Range 1

Node 4

Range 2Range 3 Range 3

Range 2

Range 3

@cockroachdb

A new replica is

allocated, data is

copied.

Data Distribution: Rebalancing

Node 1
Range 1

Range 2

Node 2
Range 1

Range 2

Node 3
Range 1

Node 4

Range 2Range 3 Range 3

Range 2

Range 3

Range 3

@cockroachdb

The new replica is

made live, replacing

another.

Data Distribution: Rebalancing

Node 1
Range 1

Range 2

Node 2
Range 1

Range 2

Node 3
Range 1

Node 4

Range 2Range 3 Range 3

Range 2

Range 3

Range 3

@cockroachdb

The old (inactive)

replica is deleted.

Data Distribution: Rebalancing

Node 1
Range 1

Range 2

Node 2
Range 1

Range 2

Node 3
Range 1

Node 4

Range 2Range 3 Range 3

Range 2

Range 3

@cockroachdb

Process continues

until nodes are

balanced.

Data Distribution: Rebalancing

Node 1
Range 1

Range 2

Range 2

Node 2 Node 3
Range 1

Node 4

Range 2Range 3

Range 1

Range 3

Range 2

Range 3

@cockroachdb

Losing a node causes

recovery of its

replicas.

Data Distribution: Recovery

Node 1
Range 1

Range 2

Range 2

Node 2 Node 3
Range 1

Node 4

Range 2Range 3

Range 1

Range 3

Range 2

Range 3

X

@cockroachdb

A new replica gets

created on an

existing node.

Data Distribution: Recovery

Node 1
Range 1

Range 2

Range 2

Node 2 Node 3
Range 1

Node 4

Range 2Range 3

Range 1

Range 3

Range 2

Range 3

X
Range 1

Range 3

@cockroachdb

Once at full

replication, the old

replicas are

forgotten.

Data Distribution: Recovery

Node 1
Range 1

Range 2

Range 2

Node 3
Range 1

Node 4

Range 2Range 3

Range 2

Range 3

Range 1

Range 3

@cockroachdb

Data Distribution

■ Ranges are ~64 MB of data

○ Small enough to be moved/split quickly

○ Large enough to amortize indexing overhead

■ This is fairly standard
○ CockroachDB/Bigtable/HBase/Spanner

@cockroachdb

Consensus SQL

Transactional KV

Distribution

Replication

Storage

@cockroachdb

Production DBs must survive machine failure

Again, two main alternatives:

■ Primary/secondary replication
■ Consensus

Achieving Consensus

@cockroachdb

Replicas contain identical copies of data: Voila!

Primary/Secondary Replication

Put “cherry”

Put “cherry”

Primary

apricot

banana

blueberry

cherry

grape

Secondary

apricot

banana

blueberry

cherry

grape

@cockroachdb

■ Asynchronous => stale reads
■ Synchronous => low availability
■ Primary to secondary failover requires care

○ Third-party needs to arbitrate primary

Primary/Secondary Replication

@cockroachdb

Replicate to N (often N=3) nodes

■ Commit happens when a quorum have written
the data

CockroachDB/Etcd/Spanner/Aurora/...

Consensus Replication

@cockroachdb

Consensus Replication

Put “cherry” Leader

apricot

banana

blueberry

cherry

grape

Follower

apricot

banana

blueberry

grape

Follower

apricot

banana

blueberry

grape

@cockroachdb

Consensus Replication

Put “cherry” Leader

apricot

banana

blueberry

cherry

grape

Follower

apricot

banana

blueberry

grape

Follower

apricot

banana

blueberry

grape

Put “cherry”

@cockroachdb

Consensus Replication

Write committed when
2 out of 3 nodes have written
data

Put “cherry” Leader

apricot

banana

blueberry

cherry

grape

Follower

apricot

banana

blueberry

cherry

grape

Follower

apricot

banana

blueberry

grape

Put “cherry”

@cockroachdb

Consensus Replication

Put “cherry” Leader

apricot

banana

blueberry

cherry

grape

Follower

apricot

banana

blueberry

cherry

grape

Follower

apricot

banana

blueberry

grape

Put “cherry”

Ack

Ack

@cockroachdb

What happens during failover?

Consensus Replication

@cockroachdb

Consensus Replication: Failover

Put “cherry” Leader

apricot

banana

blueberry

cherry

grape

Follower

apricot

banana

blueberry

grape

Follower

apricot

banana

blueberry

grape

@cockroachdb

Consensus Replication: Failover

Read “cherry”
Leader

apricot

banana

blueberry

grapeFollower

apricot

banana

blueberry

cherry

grape

Follower

apricot

banana

blueberry

grape

@cockroachdb

Consensus Replication: Failover

On failover, only data
written to a quorum is
considered present

Read “cherry”
Leader

apricot

banana

blueberry

grapeFollower

apricot

banana

blueberry

cherry

grape

Follower

apricot

banana

blueberry

grape

@cockroachdb

Consensus Replication: Failover

Read “cherry”
Leader

apricot

banana

blueberry

grapeFollower

apricot

banana

blueberry

cherry

grape

Follower

apricot

banana

blueberry

grape

Key not found

@cockroachdb

■ Raft is our consensus protocol of choice.

■ Run one consensus group per range of data

■ Practical complications: member change, range

splits, upgrades, scaling number of ranges

Consensus Replication

@cockroachdb

■ Consensus provides “atomic” replication

○ But only for each range

■ What about operations that hit multiple ranges?

Consensus Replication

@cockroachdb

Distributed
Transactions

SQL

Transactional KV

Distribution

Replication

Storage

@cockroachdb

■ CockroachDB supports traditional ACID semantics

○ “All-or-nothing”

○ Defaults to the Serializable isolation level

Let’s first look at a basic transaction implementation in a

traditional single-node DB

Transactions

@cockroachdb

Atomicity and durability are achieved by bootstrapping

off a lower-level atomic/durable primitive: log writes

■ Log entry written prior to mutations being applied

to the database, tagged with transaction ID

■ “Commit” log entry marks the transaction as

committed

Single-node DB Transactions

@cockroachdb

Need lower-level primitive to bootstrap atomic

“commit” of transaction:

■ Write to a range (i.e. a Raft consensus group)

■ A transaction has an associated transaction record

keyed by the transaction ID

■ A transaction is atomically committed or aborted by

updating the transaction record via a Raft write

Distributed Transactions (CockroachDB)

@cockroachdb

Distributed Transactions (CockroachDB)

1. Begin Txn 1
Status: PENDING

Txn-1 Record

@cockroachdb

Distributed Transactions (CockroachDB)

1. Begin Txn 1
2. Put “cherry”

apricot

cherry (txn 1)

grape

Status: PENDING

Txn-1 Record

@cockroachdb

Distributed Transactions (CockroachDB)

1. Begin Txn 1
2. Put “cherry”
3. Put “mango”

apricot

cherry (txn 1)

grape

lemon

mango (txn 1)

orange

Status: PENDING

Txn-1 Record

@cockroachdb

Distributed Transactions (CockroachDB)

1. Begin Txn 1
2. Put “cherry”
3. Put “mango”
4. Commit Txn 1

apricot

cherry (txn 1)

grape

lemon

mango (txn 1)

orange

Status: COMMITTED

Txn-1 Record

@cockroachdb

Distributed Transactions (CockroachDB)

1. Begin Txn 1
2. Put “cherry”
3. Put “mango”
4. Commit Txn 1
5. Clean up intents apricot

cherry

grape

mango

Status: COMMITTED

Txn-1 Record

lemon

orange

@cockroachdb

Distributed Transactions

■ That’s the happy case
■ What about conflicting transactions?

@cockroachdb

Distributed Transactions (read conflict)

1. Begin Txn 1
2. Put “cherry”

apricot

cherry (txn 1)

grape

Status: PENDING

Txn-1 Record

@cockroachdb

Distributed Transactions (read conflict)

1. Begin Txn 1
2. Put “cherry”

1. Begin Txn 2
2. Get “cherry”

apricot

cherry (txn 1)

grape

Status: PENDING

Txn-1 Record

@cockroachdb

Distributed Transactions (read conflict)

1. Begin Txn 1
2. Put “cherry”

1. Begin Txn 2
2. Get “cherry”

○ Check txn 1 status

apricot

cherry (txn 1)

grape

Status: PENDING

Txn-1 Record

@cockroachdb

Distributed Transactions (read conflict)

1. Begin Txn 1
2. Put “cherry”

1. Begin Txn 2
2. Get “cherry”

○ Check txn 1 status
○ Ignore uncommitted value

apricot

cherry (txn 1)

grape

Status: PENDING

Txn-1 Record

@cockroachdb

Distributed Transactions (read conflict)

1. Begin Txn 1
2. Put “cherry”

1. Begin Txn 2
2. Get “cherry”

○ Check txn 1 status
○ Ignore uncommitted value

3. Commit

apricot

cherry (txn 1)

grape

Status: PENDING

Txn-1 Record

@cockroachdb

Distributed Transactions (read conflict)

1. Begin Txn 1
2. Put “cherry”
3. Commit (potentially at later

timestamp)

1. Begin Txn 2
2. Get “cherry”

○ Check txn 1 status
○ Ignore uncommitted value

3. Commit

apricot

cherry (txn 1)

grape

Status: COMMITTED

Txn-1 Record
Status: COMMITTED

@cockroachdb

Distributed Transactions (write conflict)

1. Begin Txn 1
2. Put “cherry”

apricot

cherry (txn 1)

grape

Status: PENDING

Txn-1 Record

@cockroachdb

Distributed Transactions (write conflict)

1. Begin Txn 1
2. Put “cherry”

1. Begin Txn 2
apricot

cherry (txn 1)

grape

Status: PENDING

Txn-1 Record

Status: PENDING

Txn-2 Record

@cockroachdb

Distributed Transactions (write conflict)

1. Begin Txn 1
2. Put “cherry”

1. Begin Txn 2
2. Put “cherry”

apricot

cherry (txn 1)

grape

Status: PENDING

Txn-1 Record

Status: PENDING

Txn-2 Record

@cockroachdb

Distributed Transactions (write conflict)

1. Begin Txn 1
2. Put “cherry”

1. Begin Txn 2
2. Put “cherry”

○ Push Txn-1

apricot

cherry (txn 1)

grape

Status: ABORTED

Txn-1 Record

Status: PENDING

Txn-2 Record

@cockroachdb

Distributed Transactions (write conflict)

1. Begin Txn 1
2. Put “cherry”

1. Begin Txn 2
2. Put “cherry”

○ Push Txn-1
○ Update intent

apricot

cherry (txn 2)

grape

Status: ABORTED

Txn-1 Record

Status: PENDING

Txn-2 Record

@cockroachdb

Distributed Transactions (write conflict)

1. Begin Txn 1
2. Put “cherry”

1. Begin Txn 2
2. Put “cherry”

○ Push Txn 1
○ Update intent

3. Commit Txn 2

apricot

cherry

grape

Status: ABORTED

Txn-1 Record

Status: COMMITTED

Txn-2 Record

@cockroachdb

Distributed Transactions (CockroachDB)

■ Transaction atomicity is bootstrapped on top of Raft atomicity

■ Isolation, MVCC, other conflicts: ignored in this description

○ More details on the Cockroach Labs blog1

1 https://www.cockroachlabs.com/blog/serializable-lockless-distributed-isolation-cockroachdb/

https://www.cockroachlabs.com/blog/serializable-lockless-distributed-isolation-cockroachdb/

@cockroachdb

■ Building a SQL database for cloud environments

○ Distribute data to support SQL workloads and

fault-tolerance

○ Replicate with Raft as foundation of atomicity

○ Distributed transactions built on top

Summary

@cockroachdb

CockroachLabs.com
github.com/cockroachdb/cockroach

alex@cockroachlabs.com
github.com/a-robinson

Thank You

https://www.cockroachlabs.com
https://www.cockroachlabs.com
https://www.github.com/cockroachdb/cockroach
https://www.github.com/cockroachdb/cockroach
mailto:alex@cockroachlabs.com
mailto:alex@cockroachlabs.com
https://www.github.com/a-robinson
https://www.github.com/a-robinson

