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What is “Cloud-Native”?
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■ Horizontally scalable

■ Built to handle failures

○ No single point of failure

■ Survivable (self-healing)

■ Minimal operator overhead (automatable)

■ Decoupled from underlying platform

What is “Cloud-Native”?
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■ Can’t scale out (monolithic)

■ Not designed to recover from failures

○ Single point of failure

○ Can’t spread across availability zones

○ Manual recovery/failover

■ Tied to a particular platform

What isn’t “Cloud-Native”?
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■ Sounds a lot like many NoSQL DBs, right?

○ Replication, scaling out, tolerating failures

■ But what are they lacking?

Cloud-native databases
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Existing database solutions place an undue burden on 

application developers:

■ Scale (sql)

■ Fault tolerance (sql)

■ Limited transactions (nosql)

■ Limited indexes (nosql)

■ Consistency issues (nosql)

Database Limitations
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Why should you care about 
consistency or transactions?
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■ Reasoning about eventual consistency is hard

○ Wastes developer time

○ Causes bugs

■ Avoid stale reads or data loss on failover

■ Enables true SQL support

Strong Consistency
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“We believe it is better to have application programmers deal with 

performance problems due to overuse of transactions as bottlenecks 

arise, rather than always coding around the lack of transactions”

                                                       -Authors of Google’s Spanner paper

Transactions
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Why is this hard?



@cockroachdb

■ Fundamentally, coordination is very difficult

○ Especially when time is involved

○ Building a database is hard enough as it is

■ It’s tough to pair consistency with performance 

and scalability

Why is getting the best of both worlds so hard?



@cockroachdb

How does CockroachDB do it?
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1. Data distribution and replication

2. Consensus protocol (Raft)

3. Distributed transaction model

How does CockroachDB do it?
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Architecture (high-level)

SQL

Transactional KV

Distribution

Replication

Storage

Abstraction stack:
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Data Distribution SQL

Transactional KV

Distribution

Replication

Storage
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Two key questions: 

■ At what granularity is data distributed?
■ How do I locate a particular piece of data?

The primary options:

Hashing or Order-Preserving

Data Distribution
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Data Distribution: Order-Preserving

The alternative to hashing is an order-preserving 
data distribution:

■ Pro: efficient scans
■ Con: requires additional indexing
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Data Distribution: Order-Preserving

Each shard contains a contiguous segment of the 
key space
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Data Distribution: Order-Preserving

We need an indexing structure to locate a range

Ø-lem

apricot

banana

blueberry

cherry

grape

lem-pea

lemon

lime

mango

melon

orange

pea-∞

peach

pear

pineapple

raspberry

strawberry

Ø-lem lem-pea pea-∞

shard index



@cockroachdb

Data Distribution: Order-Preserving

Scans (fruits >= “cherry” AND <= “mango”) are 
efficient
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Data Distribution: Order-Preserving

Split when a shard is too large
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Data Distribution: Placement

Each range is replicated 

to three or more nodes
Node 1
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Adding a new 

(empty) node

Data Distribution: Rebalancing
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A new replica is 

allocated, data is 

copied.

Data Distribution: Rebalancing
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The new replica is 

made live, replacing 

another.

Data Distribution: Rebalancing
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The old (inactive) 

replica is deleted.

Data Distribution: Rebalancing
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Process continues 

until nodes are 

balanced.

Data Distribution: Rebalancing
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Losing a node causes 

recovery of its 

replicas.

Data Distribution: Recovery
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A new replica gets 

created on an 

existing node.

Data Distribution: Recovery

Node 1
Range 1

Range 2

Range 2

Node 2 Node 3
Range 1

Node 4

Range 2Range 3

Range 1

Range 3

Range 2

Range 3

X
Range 1

Range 3



@cockroachdb

Once at full 

replication, the old 

replicas are 

forgotten.

Data Distribution: Recovery
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Data Distribution

■ Ranges are ~64 MB of data

○ Small enough to be moved/split quickly

○ Large enough to amortize indexing overhead

■ This is fairly standard
○ CockroachDB/Bigtable/HBase/Spanner
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Consensus SQL

Transactional KV

Distribution

Replication

Storage
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Production DBs must survive machine failure

Again, two main alternatives:

■ Primary/secondary replication
■ Consensus

Achieving Consensus
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Replicas contain identical copies of data: Voila!

Primary/Secondary Replication

Put “cherry”
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■ Asynchronous => stale reads
■ Synchronous => low availability
■ Primary to secondary failover requires care

○ Third-party needs to arbitrate primary

Primary/Secondary Replication
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Replicate to N (often N=3) nodes

■ Commit happens when a quorum have written 
the data

CockroachDB/Etcd/Spanner/Aurora/...

Consensus Replication
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Consensus Replication

Put “cherry” Leader
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Consensus Replication

Put “cherry” Leader
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Consensus Replication

Write committed when 
2 out of 3 nodes have written 
data
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Consensus Replication

Put “cherry” Leader
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What happens during failover?

Consensus Replication
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Consensus Replication: Failover
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Consensus Replication: Failover

Read “cherry”
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Consensus Replication: Failover

On failover, only data 
written to a quorum is 
considered present
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Consensus Replication: Failover

Read “cherry”
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■ Raft is our consensus protocol of choice.

■ Run one consensus group per range of data

■ Practical complications: member change, range 

splits, upgrades, scaling number of ranges

Consensus Replication
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■ Consensus provides “atomic” replication

○ But only for each range

■ What about operations that hit multiple ranges?

Consensus Replication
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Distributed 
Transactions

SQL

Transactional KV

Distribution

Replication

Storage



@cockroachdb

■ CockroachDB supports traditional ACID semantics

○ “All-or-nothing”

○ Defaults to the Serializable isolation level

Let’s first look at a basic transaction implementation in a 

traditional single-node DB

Transactions
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Atomicity and durability are achieved by bootstrapping 

off a lower-level atomic/durable primitive: log writes

■ Log entry written prior to mutations being applied 

to the database, tagged with transaction ID

■ “Commit” log entry marks the transaction as 

committed

Single-node DB Transactions
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Need lower-level primitive to bootstrap atomic 

“commit” of transaction:

■ Write to a range (i.e. a Raft consensus group)

■ A transaction has an associated transaction record 

keyed by the transaction ID

■ A transaction is atomically committed or aborted by 

updating the transaction record via a Raft write

Distributed Transactions (CockroachDB)
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Distributed Transactions (CockroachDB)

1. Begin Txn 1
Status: PENDING

Txn-1 Record
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Distributed Transactions (CockroachDB)

1. Begin Txn 1
2. Put “cherry”

apricot

cherry (txn 1)

grape

Status: PENDING

Txn-1 Record
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Distributed Transactions (CockroachDB)

1. Begin Txn 1
2. Put “cherry”
3. Put “mango”

apricot

cherry (txn 1)

grape

lemon

mango (txn 1)

orange

Status: PENDING

Txn-1 Record
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Distributed Transactions (CockroachDB)

1. Begin Txn 1
2. Put “cherry”
3. Put “mango”
4. Commit Txn 1

apricot

cherry (txn 1)

grape

lemon

mango (txn 1)

orange

Status: COMMITTED

Txn-1 Record
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Distributed Transactions (CockroachDB)

1. Begin Txn 1
2. Put “cherry”
3. Put “mango”
4. Commit Txn 1
5. Clean up intents apricot

cherry

grape

mango

Status: COMMITTED

Txn-1 Record

lemon

orange
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Distributed Transactions

■ That’s the happy case
■ What about conflicting transactions?
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Distributed Transactions (read conflict)

1. Begin Txn 1
2. Put “cherry”

apricot

cherry (txn 1)

grape

Status: PENDING

Txn-1 Record
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Distributed Transactions (read conflict)

1. Begin Txn 1
2. Put “cherry”

1. Begin Txn 2
2. Get “cherry”

apricot

cherry (txn 1)

grape

Status: PENDING

Txn-1 Record
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Distributed Transactions (read conflict)

1. Begin Txn 1
2. Put “cherry”

1. Begin Txn 2
2. Get “cherry”

○ Check txn 1 status

apricot

cherry (txn 1)

grape

Status: PENDING

Txn-1 Record
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Distributed Transactions (read conflict)

1. Begin Txn 1
2. Put “cherry”

1. Begin Txn 2
2. Get “cherry”

○ Check txn 1 status
○ Ignore uncommitted value

apricot

cherry (txn 1)

grape

Status: PENDING

Txn-1 Record
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Distributed Transactions (read conflict)

1. Begin Txn 1
2. Put “cherry”

1. Begin Txn 2
2. Get “cherry”

○ Check txn 1 status
○ Ignore uncommitted value

3. Commit

apricot

cherry (txn 1)

grape

Status: PENDING

Txn-1 Record
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Distributed Transactions (read conflict)

1. Begin Txn 1
2. Put “cherry”
3. Commit (potentially at later 

timestamp)

1. Begin Txn 2
2. Get “cherry”

○ Check txn 1 status
○ Ignore uncommitted value

3. Commit

apricot

cherry (txn 1)

grape

Status: COMMITTED

Txn-1 Record
Status: COMMITTED



@cockroachdb

Distributed Transactions (write conflict)

1. Begin Txn 1
2. Put “cherry”

apricot

cherry (txn 1)

grape

Status: PENDING

Txn-1 Record
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Distributed Transactions (write conflict)

1. Begin Txn 1
2. Put “cherry”

1. Begin Txn 2
apricot

cherry (txn 1)

grape

Status: PENDING

Txn-1 Record

Status: PENDING

Txn-2 Record
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Distributed Transactions (write conflict)

1. Begin Txn 1
2. Put “cherry”

1. Begin Txn 2
2. Put “cherry”

apricot

cherry (txn 1)

grape

Status: PENDING

Txn-1 Record

Status: PENDING

Txn-2 Record
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Distributed Transactions (write conflict)

1. Begin Txn 1
2. Put “cherry”

1. Begin Txn 2
2. Put “cherry”

○ Push Txn-1

apricot

cherry (txn 1)

grape

Status: ABORTED

Txn-1 Record

Status: PENDING

Txn-2 Record



@cockroachdb

Distributed Transactions (write conflict)

1. Begin Txn 1
2. Put “cherry”

1. Begin Txn 2
2. Put “cherry”

○ Push Txn-1
○ Update intent

apricot

cherry (txn 2)

grape

Status: ABORTED

Txn-1 Record

Status: PENDING

Txn-2 Record
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Distributed Transactions (write conflict)

1. Begin Txn 1
2. Put “cherry”

1. Begin Txn 2
2. Put “cherry”

○ Push Txn 1
○ Update intent

3. Commit Txn 2

apricot

cherry

grape

Status: ABORTED

Txn-1 Record

Status: COMMITTED

Txn-2 Record
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Distributed Transactions (CockroachDB)

■ Transaction atomicity is bootstrapped on top of Raft atomicity

■ Isolation, MVCC, other conflicts: ignored in this description

○ More details on the Cockroach Labs blog1

1 https://www.cockroachlabs.com/blog/serializable-lockless-distributed-isolation-cockroachdb/

https://www.cockroachlabs.com/blog/serializable-lockless-distributed-isolation-cockroachdb/
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■ Building a SQL database for cloud environments

○ Distribute data to support SQL workloads and 

fault-tolerance

○ Replicate with Raft as foundation of atomicity

○ Distributed transactions built on top

Summary
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CockroachLabs.com
github.com/cockroachdb/cockroach

alex@cockroachlabs.com
github.com/a-robinson

Thank You

https://www.cockroachlabs.com
https://www.cockroachlabs.com
https://www.github.com/cockroachdb/cockroach
https://www.github.com/cockroachdb/cockroach
mailto:alex@cockroachlabs.com
mailto:alex@cockroachlabs.com
https://www.github.com/a-robinson
https://www.github.com/a-robinson

