

1

Hindsight Bias: How to deal with label leakage at scale

Till Bergmann (PhD), Senior Data Scientist tbergmann@salesforce.com

MAG

24 Hours in the Life of Salesforce

The typical Machine Learning pipeline

Multiply it by M*N (M = customers; N = use cases)

Wall Markelland

Problems with enterprise data

Not enough data scientists to hand tune each model

- We don't know the specific business use case and data
- Each step in the pipeline needs to be automated

Messy data

- Nobody likes data entry missing fields, typos
- Automated business practices can lead to patterns in the data
- Custom fields get added, removed or deprecated at any time

No historical data

- Impossible to keep track of value changes in every field
- Cold start problem

What is hindsight bias?

TRAILMAP

salesforce

ALAMANA

Label/data leakage

Back to the future Knowing things you shouldn't know

Dates for Summit An immediate investigation Of no less importance was An immediate investigation is assured and indications at the common recognition that some new light will be add on the situation in the sense vagne but anthorities for that time will disade non-means of arriving at a solution. This was reflected in the in-

solution. Future plans will, of necesstruments adopted by the con sity, have great bearing on the ference. situation as it now stands. De- An im

after a strong strong stands. Decompositions will have to be made of the actual phanning of the that one new light will be project will be for that there the strong are very important. And the strong are very important. Future plans will, of neces-sity, have great bearing on the situation as it now stands. De-source in the stands of a strain of a strain

cisions will have to be made A suggestion that public

of the actual planning of the project will take considerable time but it is felt that these

While the final outcome of this situation has yet to be determined, it is possible that is possible that is possible that the prediminary inquiry into this matter has in fact not setting a determined with the matter has aggravated the mod of theme petitioning for mode theme provide the terms of the situation but reacting the provide the mod of theme petitioning for mode the provide the terms. Also appear that the mod of theme petitioning for mode the provide the terms of the situation but reacting the provide the terms of the situation but reacting the provide the terms of the situation but reacting the provide the terms of the situation but reacting the provide the terms of the situation but reacting the provide the terms of the situation but reacting the provide the terms of the situation but reacting the terms of the terms of the situation but reacting the terms of terms of

The facts regarding the sit uation remain the same, state the authorities. Details concerning the action have been given a preliminary investiga-tion but it is felt that only by a more detailed study will the true facts become known. The Mayor, meanwhile, has

diplomatically kept a low pro-file, at least in public. Sources at City Hall confirm that until the council has finished, its private meetings concerning the issue, that the Mayor will have no public statement to make on the matter.

Future plana will, of neces-sity, have great bearing on the situation as it now stands. De-cisions will have to be made of the actual planning of the project will take considerable In any event, arrangement are going forward toward what is hoped will be a friend ly meeting of both sides at the

A classic example

Predicting survival on the Titanic

Fomalo	0.27	0.73	First Class ·	0.38	0.62
Ternale	0.27	0.75	Second Class	0.57	0.43
Male ·	0.81	0.19	Third Class	0.74	0.26
	Not Survived	Survived		Not Survived	Survived

A classic example

Predicting survival on the Titanic

A classic example

Predicting survival on the Titanic

A modern example

Predicting lead conversion in Salesforce

Before Conversion

Sales Home Chatter Campaigns 🗸	Leads V Accounts V Contacts V Opportunities	✓ Tas
🚼 Ms. Lana Miller		+
Name Ms. Lana Miller	Email Imiller@example.com	
Company Creativenet	Lead Status	
Title President	Days Since Last Activity	
Phone (650) 455-3029	Lead Owner	
✓ Segmentation		
Lead Source Website	Industry Consulting	
Region West	No. of Employees 1,800	
Annual Revenue \$60,000,000	Deal Value	
✓ Address		
Address 101 Market Street San Francisco, CA 94105 United States		
California St E Rincon Park		

After Conversion Q Search Salesforce ::: Sales Home Chatter Campaigns V Leads V Accounts V Contacts V Opportunities V Tax 🚼 Ms. Lana Miller Name Email Ms. Lana Miller Imiller@example.com Company Lead Status Creativenet New Title Days Since Last Activity President Lead Owner Phone (650) 455-3029 Ely East ✓ Segmentation Lead Source Industry Consulting Website Region No. of Employees West 1,800 Annual Revenue Deal Value \$60,000,000 \$1,000 ✓ Address Address 101 Market Street San Francisco, CA 94105 United States FINANCIAL DISTRI Rincon Park 0 Dragon's Gate COOLA THE EAMap data @2018 Google

Why does it even matter?

Good for betting, but not machine learning

salesforce

Effect on model performance

Traditional evaluation

Model relies on information not available at scoring time

- Model performance decreases for actual prediction
- Traditional evaluation pipeline is not sufficient

Effect on model performance

Score

(g)

Eval

(d,e)

t1

Eval

(g)

Score

(i)

t2

Eval

(i)

t3

Time-based evaluation

Train

(a,b,c)

Score

(d,e)

t0

Need to treat each record separately

• Score and evaluate at different times

Effect on model performance

Time based evaluation

salesforce

How do we solve it?

Solutions, and more problems

TRAILMAP

ALAMANA

What are some problems with this data?

ld	Name	Address	Phone	ClosedBy	ReasonLost	Amount	Converted	
342				32212	-	\$41k	True	
221				-	-	-	False	
098				86721	Unknown	-	False	
462				32212	-	\$23k	True	
140				-	Competitor	-	False	

What are some problems with this data?

• *ReasonLost* filled out means no conversion

ld	Name	Address	Phone	ClosedBy	ReasonLost	Amount	Converted	
342				32212	-	\$41k	True	
221				-	-	-	False	
098				86721	Unknown	-	False	
462				32212	-	\$23k	True	
140				-	Competitor	-	False	

What are some problems with this data?

- *ReasonLost* filled out means no conversion
- Amount filled out means conversion

ld	Name	Address	Phone	ClosedBy	ReasonLost	Amount	Converted	
342				32212	-	\$41k	True	
221				-	-	-	False	
098				86721	Unknown	-	False	
462				32212	-	\$23k	True	
140				-	Competitor	-	False	

What are some problems with this data?

- *ReasonLost* filled out means no conversion
- Amount filled out means conversion
- *ClosedBy* filled out, more likely to have conversion

ld	Name	Address	Phone	ClosedBy	ReasonLost	Amount	Converted	
342				32212	-	\$41k	True	
221				-	-	-	False	
098				86721	Unknown	-	False	
462				32212	-	\$23k	True	
140				-	Competitor	-	False	

Catching features that are too good

ld	Name	Address	Phone	Expected Revenue	Converted
342				0	
221				0	False
098				0	
462				15,000	True
140				12,000	True

Data behaves in mysterious ways

• Default value is not always *null*

ld	Name	Address	Phone	Expected Revenue	Converted	
342				0		
221				0	False	
098				0		
462				15,000	True	
140				12,000	True	

- Default value is not always *null*
- A value > 0 indicates conversion

ld	Name	Address	Phone	Expected Revenue	Converted	
342				0		
221				0	False	
098				0		
462				15,000	True	
140				12,000	True	

- Default value is not always *null*
- A value > 0 indicates conversion
- Auto-bucketizing can catch these cases

ld	Name	Address	Phone	Expected Revenue	Converted	
342				0		
221				0	False	
098				0		
462				15,000	True	
140				12,000	True	

- Default value is not always *null*
- A value > 0 indicates conversion
- Auto-bucketizing through decision tree can catch these cases

ld	Name	Address	Phone	Expected Revenue	Bucketized	Converted	
342				0	[1, 0, 0]		
221				0	[1, 0, 0]	False	
098				0	[1, 0, 0]		
462				15,000	[0, 1, 0]	True	
140				12,000	[0, 1, 0]	True	

Change over time

So far, we have only talked about data at the same point in time

- But training and scoring data are rarely produced at the same time
- Training data is historical, scoring data is more current

Criteria to exclude

Low overall fill ratio

• No point in keeping a feature that is mostly null

Big discrepancy between training and scoring

• Convert to probability distribution and compare with Jensen-Shannon Divergence

Skewed dates and ratios

• Be careful about including date features that might be inherently biased

AutoML vs Hand Tuning

Leakers removed by AutoML: 73

Department mkto si Last Interesting Moment c Description OtherPostalCode et4ae5 Mobile_Country_Code__c Title mkto2 Acquisition Program Id c JigsawContactId ReportsToId OtherCity pi last activity c MailingLongitude pi first activity c AssistantPhone HomePhone Fax OtherStreet Partner Last Name c mkto si Last Interesting Moment Desc c mkto2 Acquisition Program c Jigsaw Company c OtherLongitude AssistantName Salutation OtherLatitude Purchase Motivation c Secondary Email c TimetoPurchase c mkto si Last Interesting Moment Source c MailingGeocodeAccuracy MailingLatitude pi created date c CommentCapture c Preferred Communication Method c TopPriorityValue c mkto si Last Interesting Moment_Type__c OtherState TopPriorityProcess c OtherCountry MasterRecordId OtherGeocodeAccuracy TopPriorityProduct c

emailbounceddate lastcureguestdate lastcuupdatedate lastreferenceddate lastvieweddate mkto2_acquisition_date_c mkto_si_hidedate_cpi_grade_c pi__notes__c pi__utm_content__c account_link_easy_closets__c csat survey completed date c csat_survey_net_promoter_score__c csat_survey_results_link__c birthdate mkto si last interesting moment date c pi__campaign_cpi__comments_c pi first search term c pi_first_search_type_c pi__first_touch_url_cpi__score_c pi_url_c pi_utm_campaign c pi utm medium c pi utm source c historical lead score c pi utm term c first_activity_timestamp__c predicted likelihood to purchase 2 c

Leakers removed by data scientist hand tuning: 42

best_time_to_call_date__ c total_lead_score__c csat_customer_service_s urvey_disallowed__c referral_credit_applied__c referral_days_til_purchas e__c predicted_likelihood_to_p urchase__c createdbyid createddate lastactivitydate lastmodifieddate last_activity_date__c systemmodstamp

TRAILMAP

ALAMANA

Solve for all customers, not just one

Thresholds are tricky to choose

• What is a good feature and what is a bad leaker?

Easy to optimize for one model, but not for thousands

• Choosing a threshold that perfects one model, but makes hundreds worse is not good!

"Smart" decisions based on data shape preferred

• for example, auto-bucketizing - let the algorithm figure out a smart way

Lots of experimentation

• to learn heuristics that can be translated into algorithms

Key Takeaways

Enterprise data is very messy

- Often leads to hindsight bias/label leakage
- "Too good to be true" is a real problem

Standard Machine Learning pipeline is not sufficient

- Time based evaluation is needed to know how your models are doing
- You cannot simply optimize for best model at training time

Novel approaches needed to detect and remove leakage

- both on raw and transformed data
- choosing the right threshold to satisfy all customers

All the methods discussed here are part of our open-source library, TransmogrifAl

- Built on top of SparkML
- https://github.com/salesforce/TransmogrifAl

We are hiring more data scientists!

Thank you