
1111

Brian Farris
Capital One Labs

Reinforcement Learning
for Data Scientists

22

Types of Learning

Unsupervised Supervised Reinforcement

33

- Sutton and Barto, 2012

A gazelle calf struggles

to its feet minutes after

being born. Half an hour

“

later it is running at

”20 miles per hour.

44

- David Ormerod, 2016

In fact, it played so well

that it was almost scary ...

One of the greatest virtuosos

“

of the middle game had just

”been upstaged in black and white clarity.

55

Supervised Learning
• “learning from examples provided by

a knowledgeable external supervisor”

• For any state that the agent may be
in, the supervisor can supply enough
relevant examples of the outcomes

which result from similar states so
that we may make an accurate
prediction.

Reinforcement Learning
• No supervisor exists

• Agent must learn from experience as it

explores the range of possible states

• Continuously update policy in response

to new information.

Reinforcement Learning vs Supervised Learning

66

Background

RL algorithm overview

• Agent interacts dynamically with its environment,
moves from one state to another.

• Based on the actions taken by the agent, rewards

are given.

• Guidelines for which action to take in each state

is called a policy.

• Try to efficiently find an optimal policy in which

rewards are maximized.

77

Examples
agent environment actions rewards policy

Robot arm Set of arm positions bend elbow, close hand,
extend arm, etc.

reward when door
successfully opened

most efficient set of
movements to open door

Board game player Set of game configs legal moves winning the game optimal strategy

Mouse maze running, turning cheese most direct path to
cheese

Credit card company set of all customers in
default

set of collections actions cost for each attempt,
reward for successful
collection

optimal strategy for debt
collections

Marketing team sets of potential customers
and ads that can be shown

showing an ad to a
potential customer

cost of placing ad, value
of customer’s business

optimal ad placement
strategy

Call center status of each customer in
queue

connecting customers to
representatives

customer satisfaction optimal queueing
strategy

Website Designer Set of possible layout
options

changing layout Increased click-through
rate

ideal layout

88

Applications

Business operations

• Inventory management: how much to purchase of inventory,
spare parts

• Resource allocation: e.g. in call center, who to service first
• Routing problems: e.g. for management of shipping fleet, which

trucks/truckers to assign to which cargo

Schulman and Abeel, Lecture Notes, CS294

99

Applications

Finance

• Investment decisions
• Portfolio design
• Option/asset pricing

Schulman and Abeel, Lecture Notes, CS294

1010

Applications

E-commerce / media

• What content to present to users (using click-through / visit time
as reward)

• What ads to present to users (avoiding ad fatigue)
• Medicine
• What tests to perform, what treatments to provide

Schulman and Abeel, Lecture Notes, CS294

1111

Example: Article Recommendation Engine - Yahoo! Labs

"A Contextual-Bandit Approach to Personalized News Article Recommendation” (Li et al, 2012)

• Challenge: Adapt advertisements, news articles, etc. to individual users based on content and
user information

• Solution: Model personalized recommendation of news articles as a contextual bandit problem
• Tested algorithm on Yahoo! Front Page Today Module dataset containing over 33 million

events
• Found 12.5% click lift compared to a standard context-free bandit algorithm
• Argue that any bandit algorithm can be reliably evaluated offline using previously recorded

random traffic

1212

Example: Google Analytics Content Experiments

• Provides a framework for testing up to 10 versions of a single page.

• Uses Multi-Armed Bandits under the hood
• Overview of methods provided:

https://support.google.com/analytics/answer/2844870?hl=en&ref_topic=1745207
• Written by Steven L Scott, Senior Economic Analyst at Google and former Director of

Statistical Analysis at Capital One

1313

Example: Reinforcement Learning for NY State Tax Collection

"Optimizing Debt Collections Using Constrained Reinforcement Learning”

(Abe et al, 2010)

• Challenge: Optimize the debt collections process for NY state taxes.
• Outperforms standard approach of combining data modeling and constrained optimization
• State expects savings of about 100 million dollars in the next three years

1414

Recast as debt collection problem

Debt collection policy

• Each individual owes $40, will pay if asked θ times by the agent.

• In each state, the agent chooses between 2 actions, trying to
collect, or giving up.

• Each collection attempt has 2 possible outcomes:
1. it receives a negative reward of $1 and moves into

the next state.
2. it receives a positive reward of $40 and the game

terminates
• The set of all possible states is the environment.

• We don’t know the distribution of θ a priori.
• Can we learn what the best collections policy is?

• Can we learn what the expected reward is for any given state?

1515

S0 a0

a1

E

E

S1 a0

a1

E

E

S99 a0

a1

E

E

E

+40 +40 +40

-1 -1-1
……

Defined by:
• Set of all states and actions available

to agent
• Probability of transitions between

states
• For each transition, there is an

expected reward for entering new
state

• Transition probability depends only on
current state and action (Markov
Property)

Markov Decision Process

θ

1-θ 1-θ 1-θ

⇤3.5. THE MARKOV PROPERTY 55

of sums and probabilities rather than integrals and probability densities, but
the argument can easily be extended to include continuous states and rewards.
Consider how a general environment might respond at time t+1 to the action
taken at time t. In the most general, causal case this response may depend
on everything that has happened earlier. In this case the dynamics can be
defined only by specifying the complete probability distribution:

Pr{R

t+1 = r, S

t+1 = s

0 | S0, A0, R1, . . . , St�1, At�1, Rt

, S

t

, A

t

}, (3.4)

for all r, s

0, and all possible values of the past events: S0, A0, R1, ..., S

t�1,
A

t�1, R

t

, S

t

, A

t

. If the state signal has the Markov property, on the other
hand, then the environment’s response at t + 1 depends only on the state and
action representations at t, in which case the environment’s dynamics can be
defined by specifying only

Pr{R

t+1 = r, S

t+1 = s

0 | S

t

, A

t

}, (3.5)

for all r, s

0, S

t

, and A

t

. In other words, a state signal has the Markov property,
and is a Markov state, if and only if (3.5) is equal to (3.4) for all s

0, r, and
histories, S0, A0, R1, ..., S

t�1, A

t�1, R

t

, S

t

, A

t

. In this case, the environment
and task as a whole are also said to have the Markov property.

If an environment has the Markov property, then its one-step dynamics
(3.5) enable us to predict the next state and expected next reward given the
current state and action. One can show that, by iterating this equation, one
can predict all future states and expected rewards from knowledge only of the
current state as well as would be possible given the complete history up to the
current time. It also follows that Markov states provide the best possible basis
for choosing actions. That is, the best policy for choosing actions as a function
of a Markov state is just as good as the best policy for choosing actions as a
function of complete histories.

Even when the state signal is non-Markov, it is still appropriate to think
of the state in reinforcement learning as an approximation to a Markov state.
In particular, we always want the state to be a good basis for predicting
future rewards and for selecting actions. In cases in which a model of the
environment is learned (see Chapter 8), we also want the state to be a good
basis for predicting subsequent states. Markov states provide an unsurpassed
basis for doing all of these things. To the extent that the state approaches the
ability of Markov states in these ways, one will obtain better performance from
reinforcement learning systems. For all of these reasons, it is useful to think of
the state at each time step as an approximation to a Markov state, although
one should remember that it may not fully satisfy the Markov property.

for all r, s’, St and AtEnvironment defined by specifying

1616Confidential

Example: Blackjack

• What is the optimal policy when playing
Blackjack?

• What is the expected future reward in each
state?

1717

Bellman Equations

68 CHAPTER 3. THE REINFORCEMENT LEARNING PROBLEM

s,as

a

s'

r

a'

s'

r

(b)(a)

max

max

Figure 3.7: Backup diagrams for (a) v⇤ and (b) q⇤

from that state:

v⇤(s) = max
a2A(s)

q

⇡⇤(s, a)

= max
a

E
⇡

⇤[G
t

| S

t

=s, A

t

=a]

= max
a

E
⇡

⇤

" 1X

k=0

�

k

R

t+k+1

����� S

t

=s, A

t

=a

#

= max
a

E
⇡

⇤

"
R

t+1 + �

1X

k=0

�

k

R

t+k+2

����� S

t

=s, A

t

=a

#

= max
a

E[R
t+1 + �v⇤(St+1) | S

t

=s, A

t

=a] (3.14)

= max
a2A(s)

X

s

0

p(s0|s, a)
h
r(s, a, s

0) + �v⇤(s
0)
i
. (3.15)

The last two equations are two forms of the Bellman optimality equation for
v⇤. The Bellman optimality equation for q⇤ is

q⇤(s, a) = E
h
R

t+1 + � max
a

0
q⇤(St+1, a

0)
��� S

t

= s, A

t

= a

i

=
X

s

0

p(s0|s, a)
h
r(s, a, s

0) + � max
a

0
q⇤(s

0
, a

0)
i
.

The backup diagrams in Figure 3.7 show graphically the spans of future
states and actions considered in the Bellman optimality equations for v⇤ and
q⇤. These are the same as the backup diagrams for v

⇡

and q

⇡

except that arcs
have been added at the agent’s choice points to represent that the maximum
over that choice is taken rather than the expected value given some policy.
Figure 3.7a graphically represents the Bellman optimality equation (3.15).

For finite MDPs, the Bellman optimality equation (3.15) has a unique so-
lution independent of the policy. The Bellman optimality equation is actually

• System of algebraic equations

• Can be solved directly (uncommon) or iteratively (e.g.
“policy iteration” or “value iteration”)

1. Dynamic programming Approach
1. Assume complete knowledge of

environment (incl. transition
probabilities)

2. Solve eqns exactly

2. Monte Carlo Approach
• Sample sequences of states, actions, and

rewards from interaction with
environment

• For each state-action pair, compute
average subsequent rewards over many
“episodes”

3. Temporal Difference Approach (e.g. Q-learning)
• Combine MC and DP ideas.
• Update estimates based in part on other

learned estimates (bootstrapping)

4. Policy Gradient Approach (deep RL)
• Model policy with neural net
• Update parameters of policy with

gradient descent

1818

Recommendation: Check out gym.openai.com

cartpole Bipedal walker go MuJoCo

“A toolkit for developing and comparing reinforcement learning
algorithms.”

1919Confidential

OpenAI
“OpenAI is a non-profit artificial intelligence research company. Our goal is
to advance digital intelligence in the way that is most likely to benefit
humanity as a whole, unconstrained by a need to generate financial return.”

Sponsors:
•Sam Altman
•Greg Brockman
•Reid Hoffman
•Jessica Livingston
•Elon Musk
•Peter Thiel

2020

Multi-Armed Bandit: Single-state RL
• Given N different arms to choose from
• Each with an unknown reward
• How do we:

• Explore and learn the values of
each arm?

• Exploit our current knowledge to
maximize profit?

• Model as Markov Decision Process with:
• 1 state
• N actions

• Ideal approach for testing with real time
feedback

2121

MAB: A Framework for Testing
• As Data Scientists we try to:

• exploit our knowledge of the business
environment (using models)

• explore the business environment through
testing (to make the models accurate)

• Often, there is a trade-off
between exploration and exploitation.

• Testing can be very expensive, and we need to
balance the resources that we allocate to each.

• Multi-Armed Bandits provide a principled way of
striking this balance in an optimal, automated way.

2222

Example: Thompson Sampling
• Model probability distribution for each arm. For example, choose beta distribution:

P (q | y) = Beta (y + 1, n – y + 1)

• Sample a number from each distribution

• Choose arm corresponding to winner

• Arms with higher click-rate will naturally be chosen more often

• Pull the arm, measure the outcome, and update the corresponding posterior.

2323

Example: Thompson Sampling

Posterior distributions for clickrate

2424

Deep RL: Policy Gradients

humanoid

• Let the agent’s policy be expressed by a
parametrized function p (a | s, q)

• Try to find q which maximizes:
E [R | p (a | s, q)]

• Compute gradients ▽q E [R | p (a | s, q)]
• Find q which minimizes loss

• Let p (a | s, q) be a deep neural net
• q are the weights in the neural net

• See John Schulman and Pieter Abbeel’s
Deep RL course page for more info:

http://rll.berkeley.edu/deeprlcourse/

2525

Summary

Gazelle – all grown up

• RL is a framework for tackling many AI tasks.

• Useful for any business challenge in which a tradeoff
between exploration and exploitation must be
managed

• The Multi-Armed Bandit problem is a special case of
RL with a single state. Particularly relevant for
marketing applications

• Deep RL uses neural nets to model policies in RL
problems. Recent algorithms have been successful
on a wide range of problems using relatively generic
algorithms

