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What is Kafka, really?
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What is Kafka, Really?

[NetDB 2011]a scalable Pub-sub messaging system..
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[NetDB 2011]

[Hadoop Summit 2013]

a scalable Pub-sub messaging system..

a real-time data pipeline..
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Example: Centralized Data Pipeline

KV-Store Doc-Store RDBMS
Tracking Logs / Metrics

Hadoop / DW Monitoring Rec. Engine Social GraphSearchingSecurity

Apache Kafka

…



6

What is Kafka, Really?

[NetDB 2011]

[Hadoop Summit 2013]

[VLDB 2015]

a scalable Pub-sub messaging system..

a real-time data pipeline..

a distributed and replicated log..
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Example: Data Store Geo-Replication

Apache Kafka

Local Stores

User Apps User Apps

Local Stores

Apache Kafka

Region 2Region 1

write read

append log

mirroring

apply log
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What is Kafka, Really?

a scalable Pub-sub messaging system.. [NetDB 2011]

a real-time data pipeline.. [Hadoop Summit 2013]

a distributed and replicated log.. [VLDB 2015]

a unified data integration stack.. [CIDR 2015]
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Example:  Async. Micro-Services
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Which of the following is true?

a scalable Pub-sub messaging system.. [NetDB 2011]

a real-time data pipeline.. [Hadoop Summit 2013]

a distributed and replicated log.. [VLDB 2015]

a unified data integration stack.. [CIDR 2015]
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Which of the following is true?

a scalable Pub-sub messaging system.. [NetDB 2011]

a real-time data pipeline.. [Hadoop Summit 2013]

a distributed and replicated log.. [VLDB 2015]

a unified data integration stack.. [CIDR 2015]

All of them!
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Kafka: Streaming Platform

• Publish / Subscribe
• Move data around as online streams

• Store
• “Source-of-truth” continuous data

• Process
• React / process data in real-time
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Kafka: Streaming Platform

• Publish / Subscribe
• Move data around as online streams
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• “Source-of-truth” continuous data

• Process
• React / process data in real-time

Producer

Producer

Consumer

Consumer
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Kafka: Streaming Platform

• Publish / Subscribe
• Move data around as online streams

• Store
• “Source-of-truth” continuous data
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• React / process data in real-time

Producer

Producer

Consumer

Consumer Connect

Connect
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Connectors

• 40+ since first 
release this Feb (0.9+)

• 13 from                
& partners



17

Kafka: Streaming Platform

• Publish / Subscribe
• Move data around as online streams

• Store
• “Source-of-truth” continuous data

• Process
• React / process data in real-time

Streams
Producer

Producer

Consumer

Consumer Connect

Connect

Streams



18

Kafka: Streaming Platform

• Publish / Subscribe
• Move data around as online streams

• Store
• “Source-of-truth” continuous data

• Process
• React / process data in real-time

Streams
Producer

Producer

Consumer

Consumer Connect

Connect

Streams

Today’s Talk
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Stream Processing

• A different programming paradigm

• .. that brings computation to unbounded data

• .. with tradeoffs between latency / cost / correctness
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Model Update

Model

Prediction

Training / Feedback  
Stream

Input Stream 
(parameters, etc)

Output Stream 
(scores, categories, etc)

Online Machine Learning
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Sales
Message Queue

Shipment

Orders

Async. Micro-services
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OLAP Engine

Real-time Analytics

Online 
DB2

Log File Stream / 
Change Data Capture Stream

Online 
DB1 Query Results



Kafka Streams (0.10+)

• New client library besides producer and consumer

• Powerful yet easy-to-use
• Event-at-a-time, Stateful

• Windowing with out-of-order handling

• Highly scalable, distributed, fault tolerant

• and more..
23
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Anywhere, anytime

Ok. Ok. Ok. Ok.
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Anywhere, anytime

<dependency>  

  <groupId>org.apache.kafka</groupId>
  <artifactId>kafka-streams</artifactId>
  <version>0.10.0.0</version>

</dependency>
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Anywhere, anytime

War F
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Very Uncool Very Cool
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Simple is Beautiful



Kafka Streams DSL

28

 public static void main(String[] args) { 
          // specify the processing topology by first reading in a stream from a topic 
          KStream<String, String> words = builder.stream(”topic1”); 

          // count the words in this stream as an aggregated table 
          KTable<String, Long> counts = words.countByKey(”Counts”); 

       // write the result table to a new topic 
          counts.to(”topic2”); 

          // create a stream processing instance and start running it 
          KafkaStreams streams = new KafkaStreams(builder, config); 
          streams.start(); 
 }
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Kafka Streams DSL
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API, coding

“Full stack” evaluation

Operations, debugging, …
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API, coding

“Full stack” evaluation

Operations, debugging, …

Simple is Beautiful
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Kafka Streams: Key Concepts



Stream and Records
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Key Value Key Value Key Value Key Value

Stream

Record



Processor Topology
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KStream<..> stream1 = builder.stream(”topic1”); 

KStream<..> stream2 = builder.stream(”topic2”); 

KStream<..> joined = stream1.leftJoin(stream2, ...); 

KTable<..> aggregated = joined.aggregateByKey(...); 

aggregated.to(”topic3”); 



Processor Topology
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Stream



Processor Topology
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Stream
Processor
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Processor Topology
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Source Processor

Sink Processor

KStream<..> stream1 = builder.stream(

KStream<..> stream2 = builder.stream(

                                     aggregated.to(



Processor Topology

46Kafka Streams Kafka



Stream Partitions and Tasks
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Kafka Topic B Kafka Topic A

P1

P2

P1

P2



Stream Partitions and Tasks
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Kafka Topic B Kafka Topic A

Processor TopologyP1

P2

P1

P2



Stream Partitions and Tasks
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Kafka Topic AKafka Topic B



Kafka Topic B

Stream Threads
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Kafka Topic A

MyApp.1 MyApp.2
Task2Task1



Stream Threads
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Kafka Topic AKafka Topic B

Task2Task1
MyApp.1 MyApp.2



Stream Threads
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Task3
MyApp.3

Kafka Topic AKafka Topic B

Task2Task1
MyApp.1 MyApp.2



Stream Threads

53

Task3

Kafka Topic AKafka Topic B

Task2Task1
MyApp.1 MyApp.2 MyApp.3



States in Stream Processing
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• filter 

• map  

• join 

• aggregate

Stateless

Stateful



55



States in Stream Processing

56

KStream<..> stream1 = builder.stream(”topic1”); 

KStream<..> stream2 = builder.stream(”topic2”); 

KStream<..> joined = stream1.leftJoin(stream2, ...); 

KTable<..> aggregated = joined.aggregateByKey(...); 

aggregated.to(”topic2”); 

State



Kafka Topic B

Task2Task1

States in Stream Processing
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Kafka Topic A

State State



Interactive Queries on States
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Your App (Streams) Kafka

Other AppN

Other App1
…

Query 
Engine



Interactive Queries on States
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Your App (Streams) Kafka

Other AppN

Other App1
…

Query 
Engine

Complexity: lots of moving parts



Interactive Queries on States (0.10.1+)
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Your App (Streams) Kafka

State

Other AppN

Other App2

Other App1

…



Stream v.s. Table?
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KStream<..> stream1 = builder.stream(”topic1”); 

KStream<..> stream2 = builder.stream(”topic2”); 

KStream<..> joined = stream1.leftJoin(stream2, ...); 

KTable<..> aggregated = joined.aggregateByKey(...); 

aggregated.to(”topic2”); 

State



62

Tables ≈ Streams
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The Stream-Table Duality

• A stream is a changelog of a table 

• A table is a materialized view at time of a stream

• Example: change data capture (CDC) of databases

66



KStream = interprets data as record stream  

                             ~ think: “append-only” 

KTable = data as changelog stream  

                           ~ continuously updated materialized view  
                          

67
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alice eggs bob lettuce alice milk

alice lnkd bob googl alice msft

KStream  

                             

KTable  

                            
                          

User purchase history

User employment profile
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alice eggs bob lettuce alice milk

alice lnkd bob googl alice msft

KStream  

                             

KTable  

                            
                          

User purchase history

User employment profile

time

“Alice bought eggs.”

“Alice is now at LinkedIn.”
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alice eggs bob lettuce alice milk

alice lnkd bob googl alice msft

KStream  

                             

KTable  

                            
                          

User purchase history

User employment profile

time

“Alice bought eggs and milk.”

“Alice is now at LinkedIn  
 Microsoft.”
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alice 2 bob 10 alice 3

timeKStream.aggregate()  
                           

KTable.aggregate() 
                            
                          

(key: Alice, value: 2)

(key: Alice, value: 2)



72

alice 2 bob 10 alice 3

time

(key: Alice, value: 2 3)

(key: Alice, value: 2+3)

KStream.aggregate()  
                           

KTable.aggregate() 
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KStream KTable

reduce() 
aggregate() 
      …

toStream()

map() 
filter() 
join() 
   …

map() 
filter() 
join() 
   …
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KTable aggregated

KStream joined

KStream stream1KStream stream2

Updates Propagation in KTable

State
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KTable aggregated

KStream joined

KStream stream1KStream stream2

State

Updates Propagation in KTable
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KTable aggregated

KStream joined

KStream stream1KStream stream2

State

Updates Propagation in KTable
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KTable aggregated

KStream joined

KStream stream1KStream stream2

State

Updates Propagation in KTable
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What about Fault Tolerance?
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Remember?
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StateProcess

StateProcess

StateProcess

Kafka ChangelogFault Tolerance
Kafka

Kafka Streams

Kafka
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StateProcess

StateProcess 
Protoco

l

StateProcess

Fault Tolerance
Kafka

Kafka Streams

Kafka Changelog

Kafka
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StateProcess

StateProcess 
Protoco

l

StateProcess

Fault Tolerance

StateProcess

Kafka
Kafka Streams

Kafka Changelog

Kafka
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It’s all about Time

• Event-time (when an event is created)

• Processing-time (when an event is processed)
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      Event-time      1       2       3        4       5       6      7
Processing-time    1999     2002       2005       1977      1980      1983     2015 
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Timestamp Extractor
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public long extract(ConsumerRecord<Object, Object> record) { 

    return System.currentTimeMillis(); 

}

public long extract(ConsumerRecord<Object, Object> record) { 

    return record.timestamp(); 

}



Timestamp Extractor
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public long extract(ConsumerRecord<Object, Object> record) { 

    return System.currentTimeMillis(); 

}

public long extract(ConsumerRecord<Object, Object> record) { 

    return record.timestamp(); 

}

processing-time



Timestamp Extractor
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public long extract(ConsumerRecord<Object, Object> record) { 

    return System.currentTimeMillis(); 

}

public long extract(ConsumerRecord<Object, Object> record) { 

    return record.timestamp(); 

}

processing-time

event-time



Timestamp Extractor
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public long extract(ConsumerRecord<Object, Object> record) { 

    return System.currentTimeMillis(); 

} processing-time

event-time

public long extract(ConsumerRecord<Object, Object> record) { 

    return ((JsonNode) record.value()).get(”timestamp”).longValue(); 

}



Windowing
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t
…
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• Ordering 

• Partitioning &  
 

Scalability  

• Fault tolerance

Stream Processing Hard Parts

• State Management 

• Time, Window &  
 

Out-of-order Data  

• Re-processing

For more details: http://docs.confluent.io/current

http://docs.confluent.io/current
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• Ordering 

• Partitioning &  
 

Scalability  

• Fault tolerance

Stream Processing Hard Parts

• State Management 

• Time, Window &  
 

Out-of-order Data  

• Re-processing

Simple is Beautiful

For more details: http://docs.confluent.io/current

http://docs.confluent.io/current


Ongoing Work (0.10.1+)

• Beyond Java APIs

• SQL support, Python client, etc

• End-to-End Semantics (exactly-once)

• … and more
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Take-aways

•      Apache Kafka: a centralized streaming platform

• Kafka Streams: stream processing made easy
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Take-aways

•      Apache Kafka: a centralized streaming platform
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Take-aways

105

THANKS!

Guozhang Wang | guozhang@confluent.io | @guozhangwang

CFP Kafka Summit 2017 @ NYC & SF
Confluent Webinar: http://www.confluent.io/resources

•      Apache Kafka: a centralized streaming platform

• Kafka Streams: stream processing made easy

mailto:guozhang@confluent.io
http://www.confluent.io/resources

